Lim(x,y)~(0,0)(2-xy) x∧2 y∧2的极限
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 23:27:55
以直线y=kx(k≠1)趋于(0,0)则lim(x+y)/(x-y)=lim(x+kx)/(x-kx)=lim(1+k)/(1-k)极限的取值会随k的变化而变化因此,极限lim(x+y)/(x-y)当
经济数学团队帮你解答,有不清楚请追问.请及时评价.
应该分二种情况讨论,1、当X→0时Lim(x-y)/(x+y)=Lim(-y)/y=-12、当Y→0时Lim(x-y)/(x+y)=Limx/x=1
当沿曲线y=-x+x^2趋于(00)时,极限为lim(-x^2+x^3)/x^2=-1;当沿直线y=x趋于(00)时,极限为limx^2/2x=0.故极限不存在.再问:刚问阁下是干什么地,这么强再答:
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
答案是0.首先,当0再问:�ܲ����������x=��sin��y=��cos��再答:�Ҳ����������˼�ǡ��ü�������������á�x=��sin��y=��cos�ȡ���
因为│xy/(x^2+y^2)^(1/2)│≤0.5(x^2+y^2)^(1/2)任给小正数ξ>0,要使│xy/(x^2+y^2)^(1/2)│<ξ,只要(x^2+y^2)^(1/2)
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
再问:请问您是不是有《大学数学习题册》的答案呀?可不可以发给我呀?我邮箱qf9292@163.com再答:真对不起,我没有。这题是我自己做出来的。
题目有问题.无解应该有个条件,沿xxx曲线趋近与(0,0)再问:二元函数求极限:limsin(x^2*y)/(x^2+y^2)x→0,y→0不好意思,麻烦了有个符号错了再答:还是无解,除非第一个括号是
令y=x^3-x^2,带入原式,则当x,y趋于0时,原式趋于-1,再令y=x^2,带入原式,则当x,y趋于0时,原式趋于0,所以原式的极限不存在
好难阿再答:对于任意的ε>0,取N=[1/ε]+1,则当n>N时|√(n²+1)/n-1|=|[√(n²+1)-n]/n|=|1/{n[√(n²+1)+n]}|≤1/n
lim(x->0)arctan1/xlim(x->0+)arctan(1/x)=π/2lim(x->0-)arctan(1/x)=-π/2∵左右极限均存在,但不相等∴lim(x->0)arctan1/
lim[x=y,x-->0](xy)^2/(x^2+y^2)^2=lim[x=y,x-->0]x^4/(4x^4)=1/4lim[y=2x,x-->0](xy)^2/(x^2+y^2)^2=lim[y
1.y=lim(x→0)(√1+xsinx-√cosx)/arcsin^2x=lim(x→0){[(sinx+cosx)/2√(1+xsinx)+sinx/2√cosx]}/[2arcsinx/√(1
=1/(1-y/x)=1
是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对
该极限不存在,从X轴,Y轴,Y=X,Y=-X逼近原点时得到的结果不同(两个就够了)
令y=kx则limsin(y×x^2+y^4)/(x^2+y^2)=limsin[kx^3+(kx)^4]/[(1+k^2)*x^2]分子用等价无穷小替换=lim[k+(k^4)*x]*(x^3)/[