lim(n→∞) [ ln(e^x x) x ]
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 22:01:25
lim((x→+∞)(ln(1+e^x)-x)=lim((x→+∞)[ln(1+e^x)-ln(e^x)]=lim((x→+∞)ln(1+1/e^x)=0
思路:这是0/0型极限,使用罗必达法则,分式上下求导后再求极值.limln[1+sin^2(x)]/[e^(x^2)-1](x→0)=lim2sinx·cosx/{2xe^(x^2)·[1+sin^2
在x趋于0的时候,e^x(sinx)^2也趋于0,那么ln[1+e^x(sinx)^2]就等价于e^x(sinx)^2,而此时e^x趋于1,所以ln[1+e^x(sinx)^2]就等价于(sinx)^
lim(x-o)ln(sinx/x)=ln[lim(x-o)sinx/x]=ln1=0lim(x->∞){x[ln(x+a)-lnx]}=lim(x->∞){x*ln[(x+a)/x]}=lim(x-
x→0+时,x→0,e^x-1→0,ln(e^x-1)→∞1/ln(e^x-1)→0所以是两个无穷小乘积,结果是0.
lim(e^2x-1)/ln(1+x),x→0=lim2e^2x(1+x),x→0(洛必塔法则)=2
所谓等阶无穷小代换, 是以罗毕达法则为保证的, 很多教师在学生还没有学罗毕达法则时,用罗毕达法则试出一大串所谓的“等阶无穷小”,然后要学生死记硬背,把一门生气勃勃的微积分教成了靠死
ln((x+1)/x),因为(x+1)/x在x趋向于无穷大是趋向于1,这中间实际用到了连续函数极限的性质.
运用函数连续性,化成一元函数求极限x→0,y→2lim[ln(x+e^xy)/x]=x→0lim[ln(x+e^(2x)]/x【0/0型】=x→0lim[ln(1+(x+e^(2x)-1)]/x=x→
lim(x->0)[e^(2x)-1]/ln(1+3x)(因为在x-》0的时候,分子和分母都趋近于0,可以根据罗比达法则分子分母分别求导)=lim(x->0)2e^(2x)*(1+3x)/3=2*e^
1.当x→-∞时,因为e^(ax)→0,所以lim(x→-∞)x^n/e^ax=∞;连续用n次罗比达法则可知lim(x→+∞)x^n/e^ax=0,所以极限lim(x→∞)x^n/e^ax不存在.2.
n趋向于无穷时,ln(e^n+x^n)/n属于无穷比无穷型.用罗比达法则求一次导得(e^n+(x^n)*lnx)/(e^n+x^n)..常数分离得lnx+(1-lnx)/[1+(x/e)^n]讨论:若
在该极限中,n是一个常数.其实准确地说,n是“任意给定的”正整数,这就是说,n是不限制给的,想给多大都可以,但要“给定”,对给定的n,该极限为0在高数中,有大量类似的“任意给定”,对初学者来说,特别要
只能得到以下的结论limln(1+e^x)-x=limln[e^x*(1+e^-x)]-x=lim[x+ln(1+e^-x)]-x=limln(1+e^-x)=0即y=x是渐近线
式子里面没有n啊?是x→+∞吧.分子分母极限都是+∞,用罗毕达法则,对分子分母求导:lim(n→+∞)ln(1+x^2)/ln(1+x^4)=lim(n→+∞)(2x/(1+x^2))/(4x^3/(
0/0型极限,用L'Hospital法则lim(x→0)(ln(1+2x)/(e^x-1))=lim(x→0)((ln(1+2x))'/(e^x-1)')=lim(x→0)(2/(1+2x)/e^x)
1的无穷大型取对数3/xln(1-2sinx)=3ln(1-2sinx)/x0:0型,用罗比达法则=-6cosx/(1-2sinx)=-6所以答案是e的-6次方再问:能帮我lim(n->+∞)(n!-
这个=sinx*lne=sinx当x趋于0时,等于0