lim(f(x0-h)-f(x0)) h
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 17:01:02
lim(h→0)[f(x0-h/2)-f(x0)]/h=lim(h→0)[f(x0-h/2)-f(x0)]/(-h/2)*(-1/2)=f'(x0)*(-1/2)=2*(-1/2)=-1
[f(x0+h)-f(x0-h)]/2h=[f(x0+h)-f(x0-h)]/[(x0+h)-(x0-h)]所以lim(h→0)(f(x0+h)-f(x0-h))/2h=f'(x0)
lim(h>0)[f(x0)-f(x0-2h)]/h=lim(h>0)2*[f(x0)-f(x0-2h)]/2h=2*lim(h>0)[f(x0)-f(x0-2h)]/2h=2f'(x0)
6、B7、C8、D9、D10、C
用二次洛必达法则:lim(h→0)f(x0+h)+f(x0-h)-2f(x0)/h^2=lim(h→0)f'(x0+h)-f'(x0-h)/2h=lim(h→0)f''(x0+h)+f''(x0-h)
lim[f(x0)-f(x0-2h)]/h=lim[f(x0)-f(x0-h)+f(x0-h)-f(x0-2h)]/h=lim[f(x0)-f(x0-h)]/h+lim[f(x0-h)-f(x0-h-
一样的[f(x0+h)-f(x0-3h)]/h=4{[f(x0-3h)+4h]-f(x0-3h)]/4hf(x0-3h)相当于公式中的f(x)4h相当于公式中的△xh趋近于0时f(x0-3h)=f(x
lim[f(x0)-f(x0-2h)]/h=-4f'(x0)=[f(x0)-f(x0-2h)]/2h=-2(自己前面-4的负号没看见,抱歉)
(1)=limh→0[f(x0+2h)-f(x0)]/2h*2=6(2)=limh→0[f(x0)-f(x0-h)]/-h*-1=-3
limx趋于x0[f(x)-f(x0)]/(x-x0)=f'(x0)这个是导数的定义,没有为什么,人家规定的.再问:导数的定义不是[f(x)+deltax-f(x0)]/deltax吗?再答:这个是另
limf(x0+2h)-f(x0)/h=lim[f(x0+2h)-f(x0)/2h]*2=2limf(x0+2h)-f(x0)/2h=2f′(x0)=6
lim(h->0){[f(x0+h)-f(x0-h)]/h}=lim(h->0){[f(x0+h)-f(x0)+f(x0)-f(x0-h)]/h}=lim(h->0){[f(x0+h)-f(x0)]/
(f(x0+h)-f(x0-h))/2h=(f(x0+h)-f(x0)+f(x0)-f(x0-h))/2h=1/2*(((fx0+h)-f(x0))/h+((fx0-h)-f(x0))/(-h))=1
利用导数的定义f'(x0)=lim[f(x)-f(x0)]/(x-x0).极限过程为x→x0于是lim[f(x0-x)-f(x0)]/x.令t=x0-x,当x→0时有t→x0=lim[f(t)-f(x
因为lim(h→0)h/[f(x0-2h)-f(x0)]=1/4所以lim(h→0)2h/[f(x0-2h)-f(x0)]=1/2得lim(h→0)[f(x0-2h)-f(x0)]/2h=2所以lim
拆成两部分[f(x0+3h)-f(x0-2h)]/h=3*[f(x0+3h)-f(x0)]/3h+2*[f(x0-2h)-f(x0)]/(-2h)于是根据极限的定义,h趋于0时,上式趋于3*f'(x0
很高兴回答你问题,不懂再问!
f'(x0)=lim(x->x0)[f(x)-f(x0)]/(x-x0)令h=x0-x=lim(h->0)[f(x)-f(x+h)]/(-h)=lim(h->0)[f(x+h)-f(x)]/h再问:从
若f′(x0)=-3则lim[f(x0+h)-f(x0-3h)]/h=lim[f(x0+h)-f(x0)+f(x0)-f(x0-3h)]/h=lim[f(x0+h)-f(x0)]/h+lim[f(x0