lim(e^x e^2x e^3x 3)^(1 sinx)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 02:08:10
lim(e^x e^2x e^3x 3)^(1 sinx)
求微分方程y''-3y'+2y=xe^2x(e的2x次幂)的通解,

∵y''-3y'+2y=0的特征方程是r²-3r+2=0,则r1=1,r2=2∴y''-3y'+2y=0的通解是y=C1e^x+C2e^(2x)(C1,C2是积分常数)设y''-3y'+2y

高数 求极限x→0,lim(1+xe^x)^(1/x) 答案是e

这个用常用极限lim(1+x)^(1/x)=e就可以得出,很简单原式=lim(1+xe^x)^[(1/xe^x)e^x]=lime^(e^x)=e^1=e应该能看懂吧?看懂了就加分~再问:嗯。。看懂了

求极限lim x→-∞ xe^x=?

原式=lim(x->-∞)x/e^(-x)因为分子->-∞,分母->+∞,所以可以用洛必达法则=lim(x->-∞)-1/e^(-x)=0

(xe^x)'-(e^x)'是怎么推到xe^x

前一个式子(xe^x)'-(e^x)'=(x'e^x+xe^x)-e^x=e^x+xe^x-e^x=xe^x

求计算lim(xe^(1/x)-x)

令t=1/x,x→∞等效于t→0,以下极限为t→0的情况原式=lim[(e^t)/t-1/t]=lim[(e^t-1)/t]由于e^t-1和t在t→0时为等价无穷小,因此这个极限为1或者可以用洛必达(

求∫{e^x(1+x)}/{(x-xe^x)^2} dx

看起来好高端的样子,青年人网上有名师指导,高数题就是很折磨人!

lim(X-->-∞ )xe^x等于多少

lim(x->-inf)x*e^x=lim(x->-inf)x/e^(-x)洛毕塔法则,上下同时求导=lim(x->-inf)1/[-e^(-x)]=0

lim(-xe^x) x→-∞ 求极限

此为0*无穷型,将其化为无穷/无穷型,以便可用洛必达法则当x趋于-无穷,将原极限化为limx/(-e^(-x))(洛必达法则)=lim1/-e^(-x)(-1)=lim1/e^(-x)=lime^x=

【高数微积题】已知e^x=xe^(θx)+1 求lim(x->o)θ ^表示次方

请点击图片查看解题过程. 回答补充:洛必达法则的含义是:对一分数形式函数而言,如果当自变量趋于某一确定值的时候,分子、分母同时趋近于0或无穷大,那么此时就可对两者(分子、分母)同时求导数(前

求一下两个不定积分:1.∫[xe^x/(e^x+1)^2]dx 2.∫dx/[(sinx)^3cosx]

1.令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1

lim x→+∞ xe^(-x)=?

lim(x→+∞)xe^(-x)=lim(x→+∞)x/e^(x)(∞/∞)=lim(x→+∞)1/e^(x)=0

当x趋向于无穷时lim xe^x(2e^x+1)/[1+(e^x+1)^2](1+e^x)的极限是多少

笨办法做的话,都乘开,得到(2xe^x+xe^x)/(e^3x+3e^2x+4e^x+2),上下除以e^2x,得到(2x+xe^-x)/(e^x+3+4e^-x+2e^-2x),x趋于无穷的时候上下都

求不定积分 xe^x/(1+x^2)

分部积分法∫xe^x/(1+x)^2dx=-∫xe^xd[1/(1+x)]=-xe^x/(1+x)+∫(1+x)e^x×1/(1+x)dx=-xe^x/(1+x)+∫e^xdx=-xe^x/(1+x)

求不定积分∫(xe^x)/(e^x+1)^2

令y=e^x,x=lny,dx=1/ydy.原式=∫lny/(y+1)^2dy分部积分:令u=lny,v'=1/(y+1)^2则∫lny/(y+1)^2dy=-lny/(y+1)+∫1/y(y+1)d

∫f(x)dx=xe²*求f(x) e²*+2xe²* *是x

∫f(x)dx=xe²就是求导,因为xe²*是原函数,那么f(x)就是它的导数xe^2x`=e^2x+x*2e^2x就是e²*+2xe²*

∫[xe^x/(1+x)^2]dx

点击即可放大,哈哈!

求下列不定积分∫xe^x dx,∫e^xcos2xdx,∫e^2e^dx...

∫xe^xdx,=∫xde^x=xe^x-∫e^xdx=xe^x-e^x+c∫e^xcos2xdx=(1/2)∫e^xdsin2x=(1/2)e^xsin2x-(1/2)∫sin2xe^xdx=(1/

lim(x→∞)xe^(-1/x)要步骤谢谢

很高兴为你解答.本题目因为lim(x->∞)exp(-1/x)=1,lim(x->∞)x的极限是∞.所以结果是∞.令y(x)=(x-2)^5(2x+1)^4y'(x)=5*(x-2

lim→0[∫(上限x,下限0)(1+t^2)e^t^2dt]/xe^x^2 lim→0[∫(上限x^2,下限0)cos

第一题积分式与x无关分母可以提到等式外面去做剩下积分式的分母由于x→0所以上面积分从0积到0显然趋向于0分母带0进去算也趋向于0于是是0/0型分式用罗比大法则上下求导上面积分式为变限积分求导上限是x时

lim(x→0y→1)(1+xe^y)^(2y+x/x)求极限

是不是等于1?再问:😓😓😓😰就是不懂啊,不等于再答:请参考,不一定对