lim(1 xy)^1 x y xy 趋于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:13:24
将1/x用a代换,a趋向0,得到lim{[a-ln(1+a)]/a^2},再将ln(1+a)泰勒展开,得到a-(1/2)a^2+o(a^2),待入易得结果为1/2这是最好的做法.
如果是1/xy次方=lim{(1+sin(xy))^(1/sin(xy))}^sin(xy)/xy=e.如果是xy次方,就是1再问:我开始也认为很简单嘛=1,但老师给的答案是e再答:如果是xy次方,就
f(x,y)=(2-xy)/(x²+2y),这是一个初等函数,初等函数在定义域内均连续,而(0,1)显然是定义域内的点,因此连续,因此可直接算函数值就行了.lim(x,y)→(0,1)(2-
lim(x,y)→(0,0)[1-cos(xy)]/xy^2=lim(x,y)→(0,0)(x²y²/2)/xy^2..=lim(x,y)→(0,0)x=0再问:[1-cos(xy
1.∵x²+y²≥2|xy|∴0≤|(x+y)/(x²+y²-xy)|=|x+y|/|x²+y²-xy|≤|x+y|/(x²+y&
对a(sinx-x)/x^3求导得a(cosx-1)/3x^2再对a(cosx-1)/3x^2求导得-asinx/6x,当x→0时,limsinx/x=1所以当x→0时,lima(sinx-x)/x^
(x,y)->(0,0)=>u=xy->0lim(x,y)->(0,0)xy/[√(xy+1)-1]=limu->0u/[√(u+1)-1]=limu->0u*[√(u+1)+1]/u=limu->0
limx→0y→02xy/根号下1+xy然后-1=limx→0y→02xy[√(1+xy)+1]/[√(1+xy)-1][√(1+xy)+1]=limx→0y→02xy[√(1+xy)+1]/xy=l
假设沿着y=kx趋近于原点,则:lim[1-cos(xy)]/(xy)^2=lim[1-cos(kx)^2]/(k^2*x^4)=lim2{sin[(kx)^2/2]}^2/{[(kx)^2/2]^2
这是一个重要极限(1+x)开n次根号—1趋向于x/n所以呢lim分子xy/3分母xy结果1/3
利用幂级数在点 (0,0) 的展开式:e^xy=1+xy+x²y²/2!+x³y³/3!+.略去二次项及更高次项无穷小,得 e^x
解分子和分母同时求导lim(x趋于正无穷)分子(-1/1+X^2)分母为(-1/X^2)化简得x^2/1+X^2因为分子和分母都是无穷数所以再求导则2x/2x=1解分子分母同时求导因为分子和分母是复合
令u=xy,则原式=lim(√(u+1)-1)/u=lim((u+1)-1)/[u·(√(u+1)+1)]=limu/[u·(√(u+1)+1)]=lim1/(√(u+1)+1)=1/2
x^2+(y^2)/2=1,x^2+[(1/√2)y]^2=1,设x=cosA,y=√2sinA,因x>0,y>0,不妨设0<A<π/2,x√(1+y^2)=cosA√[1+2(sinA)^2]=√{
1.原式=lim(x^2-2x-1)/(x^2-1)=lim(1-2/x-1/x^2)/(1-1/x^2)=12.原式=lim-2x^2/(x^2-1)=-2/(1-1/x^2)=-2首先分母通分,而
原式=lim(x,y)→(0,1)(1+xy)^[1/yx·y]=[lim(x,y)→(0,1)(1+xy)^1/yx]^[lim(x,y)->(0,1)y]=e^1=e
lim(x^2-x+1)/(x-1)^2=1/0=无穷大lim(2x+3/2x+1)^x+1=lim(1+2/2x+1)^{[(2x+1)/2]*(2/2x+1)*(x+1)}=lim(e^{(2/2
分子分母同乘以√(xy+1)+1,则分子变为:xy分母变为:(x+y)[√(xy+1)+1]其中:[√(xy+1)+1]的极限存在下面只需证明limxy/(x+y)极限不存在即可.取两条特殊路线:1、
原式=(sinx-1)/cotx=cosx/(-csc^2)洛必达法则=0
取对数,得ln(2+xy)/(y+xy^2).(x,y)→(2,-1/2),所以xy→-1,所以ln(2+xy)是无穷小,等价于1+xy.所以,limln(2+xy)/(y+xy^2)=lim(1+x