lim(1 n)^(1 n)(n趋于0时)=e

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:54:20
lim(1 n)^(1 n)(n趋于0时)=e
lim[(n+3)/(n+1))]^(n-2) 【n无穷大】

lim[(n+3)/(n+1)]^(n-2)=lim[1+2/(n+1)]^(n-2)=lim{[1+2/(n+1)]^[(n+1)/2]}^[(n-2)×2/(n+1)]=lime^[2(n-2)/

lim根号n^2+n+1/3n-2

lim【n→∞】√(n²+n+1)/(3n-2)=lim【n→∞】√(1+1/n+1/n²)/(3-2/n²)=√(1+0+0)/(3-0)=1/3答案:1/3

lim(3^2n+5^n)/(1+9^n)

除以9^n,3^2n就是9^n

求极限lim(n→∞)(a^n+(-b)^n)/(a^n+1+(-b)^n+1)

n→+∞时[a^n+(-b)^n]/[a^(n+1)+(-b)^(n+1)]={[1+(-b/a)^n]/[a-b(-b/a)^n]→1/a,|a|>|b|;.{[(-a/b)^n+1]/[a(-a/

求lim n→∞ (1+2/n)^n+3

limn→∞(1+2/n)^(n+3)=limn→∞(1+2/n)^n*limn→∞(1+2/n)^3=e^2.

求lim(n+1)(n+2)(n+3)/(n^4+n^2+1)

n是趋于无穷大么?就按这个解答.分子分母同除以n^4,化为[1/n*(1+1/n)(1+2/n)(1+3/n)]/(1+1/n^2+1/n^4),由于n趋于无穷大,所以1/n、2/n、3/n、1/n^

Lim n-无穷大 n/(n^2+1^2)+n/(n^2+2^2)+.n/(n^2+n^2)

lim(n趋近无穷){n/(n^2+1)+n/(n^2+2^2)+...+n/(n^2+n^2)}=积分(x从0到1)1/(1+x^2)dx=arctanx(x从0到1)=pi/4.

求极限lim [ 2^(n+1)+3^(n+1)]/2^n+3^n (n→∞)

[2^(n+1)+3^(n+1)]/[2^n+3^n]=[2*2^n+3*3^2]/[2^n+3^n]=[2*2^n+2*3^2+3^n]/[2^n+3^n]=2+3^n/[2^n+3^n]lim2+

lim(n->∞) n的1/n次方

极限等于1设n^(1/n)=1+t则有n=(1+t)^n于是n>1+[n(n-1)/2]t^2得t

lim(n→∞)[1/(3n+1)+1/(3n+2)+~1/(3n+n)]

lim(n→∞)1/(3n+1)+1/(3n+2)+...+1/(3n+n)=lim(n→∞)1/[n(3+1/n)]+1/[n(3+2/n)]+...+1/[n(3+n/n)]=lim(n→∞)(1

lim((n+1)^a-n^a) (0

首先:((n+1)^a-n^a)>0其次:((n+1)^a-n^a)=n^a[(1+1/n)^a-1]由于00所以(1+1/n)^a所以有:n^a[(1+1/n)^a-1]而0综合起来有:0同时取极限

lim(n)^1/n=1证明

对于任意的ε,因为(n)^1/n>1,令(n)^1/n=1+b,则n=〖(1+b)〗^n=1+nb+[n(n-1)/2]b^2+…(二项式展开)所以当n>3时,n>1+[n(n-1)/2]b^2,从而

lim[n/(n*n+1*1)+n/(n*n+2*2)+...+n/(n*n+n*n)],当x趋向无穷大时,怎么求极限,

其实把上下都除以n^2,则极限等于定积分关于该积分所以结果为

lim(根号(n平方+2n)-根号(n平方-1))

上下乘√(n²+2n)+√(n²-1)分子是平方差=n²+2n-n²+1=2n+1原式=lim(2n+1)/[√(n²+2n)+√(n²-1

lim(n+1)^(1/2)-n^(1/2) ,n->无穷大

提示:本思路就是分子有理化.为方便起见,1/2次方,我用二次根号表示.√(n+1)-√n=[√(n+1)-√n][√(n+1)+√n]/[√(n+1)+√n]=[(n+1)-n]/[√(n+1)+√n

求极限n~∞,lim(n+1)/2n

再答:我的答案,望采纳!