lim(1 n 1)n趋于无穷
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 00:58:07
令t=1/n,limt趋于01/ln(1+t)-1/t=t-ln(1+t)/tln(1+t)=1-1/1+t/2t=1,第二步用了洛必达和等价代换ln(1+t)~t
limn趋于无穷3n²+2n-1/2n²+n-10=(3+2/n-1/n^2)/(2+1/n-10/n^2)=3/2
等于0.先积分得1/(n+1),再求极限.
请您先看一下高等数学课本上运用夹逼定理证明n趋于无穷时,sinx/x的证明过程.我是通过课本上的证明过程想到的.1/n>0.在课本上证明夹逼定理证明n趋于无穷时,sinx/x的证明时.通过单位圆得出了
∵lim(n趋于无穷)Un=a即对于任意e>0,存在N,当n>N时,有|Un-a|
lim(n趋于无穷)nf(a-1/n)=lim(n趋于无穷)-[f(a-1/n)-f(a)]/(-1/n)=-f'(a)=-1
lim(n→∞)(n^(2/3)sinn²)/(n-1)=lim(n→∞)[n^(2/3)/(n-1)]*sinn²∵lim(n→∞)[n^(2/3)/(n-1)]=lim(n→∞
若a=0,结论不言而喻,所以只讨论a≠0.【方法一】存在N>2|a|,记M=|a|^N/N!,当n>N时,|a|^n/n!=M*[|a|/(N+1)]*[|a|/(N+2)]*……*[|a|/(n)]
答案是e,主要用公式lim(n → ∞) (1 + 1 / n)^n = e
你确定是n趋于无穷么?那么在这里1+n,1+n^2,1+n^4……1+n^2n都是趋于无穷的,当然它们的乘积也趋于无穷
lim【n→∞】(2n²-3n+1)/(n+1)×sin(1/n)=lim【n→∞】(2n²-3n+1)/(n+1)×(1/n)=lim【n→∞】(2n²-3n+1)/(
因为limS2n(n趋于无穷)=s,lim(S2n+1)(n趋于无穷)=s所以limSn(n趋于无穷)=s即部分和的极限为s,所以原级数收敛,且该级数=s.只有一个不行,除非你直接算出:limSn(n
lim(n趋于无穷)n次根号下[1+|x|^3n]=lime^[(1/n)·ln(1+|x|^3n)].则|x|1时,极限=lime^[(1/n)·ln(1+|x|^3n)]=lime^[(3ln|x
是除以x的平方吧?分子用等差数列求和即x(x+1)/2x^2利用罗比达定理即可得出答案
这种极限,只看最高次项系数之比分子分母最高次项都是2因此极限是1/2再问:请问这是按照哪个定理出的结论?再答:一经验二,书上确实有这个定理,但没有名字,不信你可以翻翻书
根据定积分的定义做就可以
答案为0.数控an是单挑递减的再问:a不等于0时liman+1/an为什么等于a/a=1?谢谢再答:lim(an+1)/an=liman+1/(liman)=a/a=1再问:liman+1为什么也等于
f(x)=lim(n趋于∞)[(nsinx+1)/(n+2)x]=lim(n趋于∞)n/(n+2)*sinx/x+1/(n+2)x显然n趋于∞的时候,n/(n+2)趋于1,1/(n+2)趋于0那么f(