lim x趋向0[e^(x^2)-e^(2-2cosx)] x^4

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 18:09:13
lim x趋向0[e^(x^2)-e^(2-2cosx)] x^4
limx趋向0 ln(1+x)/x

由于上下在x趋向0时都趋向0所以可以利用洛比塔法则limx趋向0ln(1+x)/x=limx趋向0(ln'(x+1)/x')=limx趋向0(1/(1+x))=1

limx趋向于0,x^2/ln(1-3x)=?

limx^2/ln(1-3x)=lim2x/[-3/(1-3x)("0/0"型)x→0x→0=(-2/3)limx(x-3x^2)x→0=0

limx趋向于+0,(根号下x+2-根号下x)

x→0⁺lim[√(x+2)-√x]=√2;【用不着有理化,答案看直接写出,不是0,也不是1,是√2】.【先分子有理化,结果也一样】:x→0⁺lim[√(x+2)-√x]=x→

limx趋向0 (e-(1+x)^1/x )/x 求极限

lim(x->0)(exp(1)-(1+x)^(1/x))/x  =lim(x->0)(exp(1)-exp(1)exp(ln(1+x)/x-1))/x  =lim(x->0)exp(1)(1-exp

求极限limx趋向于0 x^2·e^(1/x^2)

令u=1/x^2,则原式=lim(u→+∞)(e^u)/u=lim(u→+∞)(e^u)=+∞这里应用了洛必达法则.再问:谢了,牛

求极限limx趋向于0(1/e^x-1)-(1/x)

用等价无穷小替换和洛必达法则,原式=lim(x→0)(x-e^x+1)/(x(e^x-1))=lim(x→0)(x-e^x+1)/x^2=lim(x→0)(1-e^x)/(2x)=-1/2lim(x→

求极限:limx^(x^x-1),x趋向于0+

结果是e^2x^X-1=e^(xlnx)-1=xlnx好了原式=limx^(xlnx)下面罗比达法则

limx趋向于0(2x-1)^5/((2x+1)^2(1-3x)^2)

x趋向于0的时候,(2x-1)^5以及(2x+1)^2和(1-3x)^2都不等于0,所以直接将x=0代入计算即可,lim[x->0](2x-1)^5/((2x+1)^2(1-3x)^2)=(-1)^5

求极限limx趋向0+[lnx/(1+x)^2-lnx+ln(1+x)]..

通分lnx/(1+x)^2-lnx+ln(1+x)=[lnx-(lnx-ln(1+x))(1+x)^2]/(1+x)^2=lnx(-2x-x^2)/(1+x)^2+ln(1+x)(1+x)^2/(1+

limx趋向0(2x-1/3x-1)的x/1次方的极限

lim(x->0)[(2x-1)/(3x-1)]^(1/x)=lim(x->0){[1+(-x)/(3x-1)]^[(3x-1)/(-x)]}^[-1/(3x-1)]=e^[(-1)/(-1)]=e

求极限limx(e^(1/x)-1),x趋向∞

你的解法肯定是错误的,零乘以无穷大绝对是没有直接答案的,除非对表达式变形具体做法:此极限时属于:无穷大的零次方型步骤:1、将x写成x倒数的倒数,在乘上后面的部分2、将x得倒数用一个变量t代换,所以,原

limx趋向于0 求(e^2-(1+1/x)的x^2)/x 的极限

这是个错题.当x趋向于0-0时,1/x->-inf,1+1/x->-inf(1+1/x)的x^2为(-inf)^0型极限,没办法求.

limx趋向0[ln(1+x^2)/secx-cosx]

secx-cosx=1/cosx-cosx=(1-cos^2x)/cosx=(1+cosx)(1-cosx)/cosx所以原式=limcosxln(1+x^2)(1+cosx)(1-cosx)x趋于0

limx趋向0(∫arctan t dt)/x^2 上限x下限0 求极限

使用洛必达法则以及等价无穷小lim(x→0)(∫0~xarctantdt)/x^2=lim(x→0)arctanx/2x=1/2

limx趋向于无穷大((2+e^(1/x))/(1+e^(4/x)+sinx/|x|)

再答:不懂的话还可以问我。再问:可以拆开一个一个求?再答:额,前面的只是给你解释方便你看懂,平常的话不写都可以。

利用重要极限公式求limx趋向于0(1+x/2)^x-1/x

 若有不懂请追问,如果解决问题请点下面的“选为满意答案”.

limx趋向0 x^2/1-根号下1+x^2 的极限

x^2/1-根号下1+x^2化简得-(1+根号下1+x^2)极限为-2

limX趋向于0+时,e^(-1/x)除以X的极限怎么用洛必达计算出来,需要详细过程

lime^(-1/x)/xt=1/xlimt*e^-t=limt/e^t=lim1/e^t=0(t趋向于正无穷)