lim x->0 y->1 ln(x e y) x y2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 22:06:46
lim(x->0)(lnx)ln(1+x)=lim(x->0)(ln1+x)/(1/lnx)----用洛必达法则一次=lim(x->0)1/(1+x)/[-(1/x)/(ln²x)]=lim
limx[ln(2x+1)-ln(2x)]=limx[ln(2x+1)/2x]=limln[1+1/2x]^x=limln[1+1/2x]^(2x.1/2)=limlne^(1/2)=1/2
由于上下在x趋向0时都趋向0所以可以利用洛比塔法则limx趋向0ln(1+x)/x=limx趋向0(ln'(x+1)/x')=limx趋向0(1/(1+x))=1
看不懂你写的什么再问:再答:等价无穷小代换再问:谢谢了!再答:x-tanx根据泰勒公式得出再问:才开始学泰勒公式,没太掌握再答:那一章是高数的重中之重再问:工科数分,简直云里雾里
limx/ln(1+x²)[分子分母都趋向于0]x→0=lim1/[2x/1+x²][运用罗毕达法则,分子分母分别各自求导了一次]x→0=lim(1+x²)/2x[分子趋
lim(x→∞)x[ln(1+x)-lnx]=lim(x→∞)x·ln[(1+x)/x]=lim(x→∞)ln[(1+x)/x]^x=lnlim(x→∞)[1/x+1]^x=lne=1.----[原创
limx趋向0+[x^ln(1+x)]=limx趋向0+[e^(xln(1+x))]=e^limx趋向0+[(xln(1+x))]limx趋向0+(xln(1+x))=0所以limx趋向0+[x^ln
对分子分母分别求导,再取极限.sin3x求导=3cos3x,x求导=1,当x=0,极限为3cos0/1=3同样求导,分子=e^x/(e^x+1),分母=e^x.x趋向正无穷,分子除分母=1/(e^x+
secx-cosx=1/cosx-cosx=(1-cos^2x)/cosx=(1+cosx)(1-cosx)/cosx所以原式=limcosxln(1+x^2)(1+cosx)(1-cosx)x趋于0
x-->0ln(1+x)-->xlim(x-->0)ln(1+x)/x=lim(x-->0)x/x=1再问:第一步怎么弄出来的?再答:无穷小再问:能解释的再详细一点吗?我还是不太懂再答:等价无穷小当x
直接将x=2y=0代入其中,得ln(2+e*0)/根号2*2+0*2)=ln3/2
是求x[ln(x+1)-ln(x)]的极限吧?lim(x->∞)x[ln(x+1)-ln(x)]=lim(x->∞)ln((x+1)/x)/(1/x)(0/0型罗比塔法则)=lim(x->∞)(x/(
等于1,用罗比达法则求第一步:等于[1-1/(1+x)]/sinx的极限,第二步就可以得到结果了
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
用等价无穷小代换有原式=lim3x/(4x)=3/4
是0/0型的,用洛必塔法则:limln(1+sin2x)/xx->0+=lim1/(1+sin2x)*cos2x*2/1x->0+=1/(1+0)*1*2/1=1/2
当x趋于0时,ln(1-2x)与sinx均趋于0,是0/0型极限由洛必达法则,得limln(1-2x)/sinx=lim-2/(1-2x)cosx当x趋于0时,lim-2/(1-2x)cosx=-2所