lim n趋于无穷大 n的n分之一次方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:12:14
lim n趋于无穷大 n的n分之一次方
lim1+2+3+...+(n-1)/n的平方(n趋于无穷大)求它的极限

[1+2+3+...+(n-1)]=n(n-1)/2[1+2+3+...+(n-1)]/n^2=(n-1)/2n=1/2-1/2nlim1+2+3+...+(n-1)/n的平方(n趋于无穷大)求它的极

n^2*q^n求极限(n趋于正无穷大,q的绝对值小于1)

n^2*q^n=n^2/q^-n为无穷大除无穷大不定式,根据罗必塔法则,上下求导两次,分子为常数,而分母仍为无穷大,因此极限为0

求lim(根号下n+1)-(根号下n),n趋于无穷大的极限

√(n+1)-√n=[√(n+1)-√n]*[√(n+1)+√n]/[√(n+1)+√n]=1/[√(n+1)+√n]那么显然在n趋于无穷大的时候,分母[√(n+1)+√n]趋于无穷大,所以√(n+1

n趋于无穷大,求根号下n平方+n 在减n的极限

详细解答与说明, 请参见图片.点击放大,再点击再放大:

求(1^n+2^n+3^n)^1/n,n趋于无穷大的极限

有夹逼准则可知(3^n)^1/n=3

如何求当N趋于无穷大时N的N分之一的极限

先考虑其对数的极限:n--->无穷大时,lnn^(1/n)=lnn/n=1/n/1-------------罗必达法则=0所以n--->无穷大时,n^(1/n)---->1

n趋于无穷大时,{n[ln(n+2)-lnn]} 的极限

n[ln(n+2)-lnn]=nln(n+2)/n=nln(1+2/n)=2ln[(1+2/n)^(n/2)]当n趋于无穷时(1+2/n)^(n/2)趋近于e所以n[ln(n+2)-lnn]=2ln[

lim[1/(n+1)+1/(n+2)+1/(n+3)+、、、1/(n+n)]当n趋于无穷大时的极限?

http://zhidao.baidu.com/question/80076476.html?si=4

n趋于无穷大时,求(n+1)/(n!开n次方)的极限.

先考虑(ln(1/n)+ln(2/n)+...+ln(n/n))/n------>积分(从0到1)lnxdx=-1即ln((n!)^(1/n)/n)--->-1ln(n/(n!)^(1/n))----

n乘以q的n次方,n趋于无穷大,0

怎么可能是1...1/(q^n)是1/n的高阶无穷小答案是0

数列xn属于(0,1),x(n+1)=xn(1-xn),证limn*xn=1(n趋于无穷大)

1)x(n+1)-xn=-(xn)^2正无穷)存在.在原递推公式两边取极限得:极限=02)原递推公式可化为1/x(n+1)=1/xn+1/(1-xn)故1/x(n+1)-1/xn=1/(1-xn)3)

(n/(n+1))^n,当n趋于无穷大时的极限.

用特殊极限计算如下,点击放大:

高数 n趋于无穷大的极限

0∞)a^n=1n^2+1/(n^3+a^n).[(n+1)^3+a^(n+1)]/[(n+1)^2+1]最大分子:n的次方=最大分母:n的次方=n^5系数(分子n^5)=系数(分母n^5)=1lim

两题前提都是n趋于无穷大

抱歉啊,昨天不好意思把e漏掉了,多亏你提醒.现在我已改了,而且还漏了"-"号,原答案中"-"号去掉:1.此为无穷*0型,先改写成0/0型,再用洛比达法则:=lim[e-(1+1/n)^n]/(1/n)

n开n次方,n趋于无穷大,结果多少?

y=n^(1/n)lny=lnn/n这是∞/∞,可以用洛比达法则分子求导=1/n分母求导=1所以=1/nn趋于∞所以lny极限=0所以y极限=e^0=1

n^n/(e^n×n!)极限(n趋于无穷大)

用斯特林公式,极限为0这是因为lim(n→∞)√(2πn)*n^n*e^(-n)/n!=1请参考

为什么数列的极限自变量n是趋于无穷大,而不是趋于正无穷大

因为n是正整数,所以n不可能趋向-∞,所以就没必要去区分是正无穷大还是负无穷大了.在数列中,提到n趋向无穷大,只能是﹢∞.