等边三角形点D ,E分别在BC,AC上且BD=三分之一BC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 09:54:00
等边三角形点D ,E分别在BC,AC上且BD=三分之一BC
.如图,⊿ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F.

(1)因为⊿ABC是等边三角形所以AB=BC,∠ABC=∠C=∠BAC=60°又因为BD=CE所以△ABD≌△BCE(SAS)(2)⊿AEF与⊿ABE相似理由:由(1)知:∠BAD=∠CBE,∠BAD

如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F

∵△ABC是等边三角形∴AB=BC,∠ABD=∠BCE=60°∵BD=CE∴⊿ABD≌⊿BCE﹙SAS﹚再问:是证这两个三角形相似不是证全等再答:全等一定相似

如图,△ABC为等边三角形,点D,E,F分别在AB,BC,CA边上,且△DEF是等边三角形,求证:△ADF≌△CFE.

证明:∵△ABC为等边三角形,∴∠A=∠C=60°.∴∠ADF+∠AFD=120°.(2分)∵△DEF是等边三角形,∴∠DFE=60°,DF=EF.∴∠AFD+∠CFE=120°.∴∠ADF=∠CFE

已知△ABC为等边三角形,点D,E分别在BC,AC边上,且AE=CD,AD与BE相交于点F.

证明:∵△ABC为等边三角形,∴∠BAC=∠C=60°,AB=CA,在△ABE和△CAD中,AB=CA∠BAE=∠CAE=CD,∴△ABE≌△CAD(SAS).

如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上

解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D

如图,在等边三角形ABC中,D,E,F分别是BC,AC,AB上的点,且AF=BD=CE,求证:△DEF是等边三角形

证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形

已知:如图△ABC为等边三角形,点D,E,F分别在BC,CA,AB上,且AF=BD=CE,求证:△DEF是等边三角形

已知:△ABC为等边三角形,∴AB=BC=CA,∠A=∠B=∠C=60°.已知:AF=BD=CE,∴FB=DC=EA.在△AFE和△BDF和△CED中,FB=DC=EA,AF=BD=CE,∠A=∠B=

如图 在等边三角形ABC中,点D,E,F分别在AB,BC,CA上,AD=BE=CF,△DEF为等边三角形

1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)

如图,在等边三角形ABC中,点D、E分别在边BC,AB上,且BD=AE,AD与CE交于点F.

1.证三角形ABD与三角形CAE全等,用边角边.AB=AC,BD=AE,60度角2.全等之后,角BAD=角ACE所以,角DAC=角ECB又角DFC=角DAC+角ACE,所以,角DFC=角ECB+角AC

在等边三角形ABC中,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.求

60度三角形ADC全等于BEA角DAC=角ABE角BFD=角BAD+角ABE=角BAD+角DAC=60度

在等边三角形ABC中D.E分别为BC CA上的点且BD=CE

三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°

已知三角形ABC是等边三角形,D,E分别是BC,AC上的点,且BD=CE,以AD为边在AC一侧作等边三角形ADF.

1、∠BAD+∠DAC=∠DAC+∠CAF=60∠BAD=∠CAF而边AB=AC,AD=AF,三角形ABD相似于ACF,CE=BD=CF,角ABD=ACF=60三角形CEF为正三角形2.边BC=BA,

如图,△ABC为等边三角形,点D,E,F分别在边AB,BC,CA上,且△DEF也是等边三角形,求证AD=BE=CF

证明:∵等边△ABC∴∠A=∠B=∠C=60∵等边△ADEF∴∠DEF=∠EFD=∠FDE=60,DE=EF=DF∵∠DEC=∠B+∠BDE=60+∠BDE,∠DEC=∠DEF+∠CEF=60+∠CE

点D.E.F分别在AB.BC.CA之上,△DEF是等边三角形且∠1=∠2=∠3,△ABC是等边三角形么

△ABC是等边三角形∠1+∠B+∠DEB=180°∠3+∠DEF+∠DEB=180°∴∠1+∠B+∠DEB=∠3+∠DEF+∠DEB又∵△DEF是等边三角形∴∠DEF=60°∠1=∠2=∠3∴∠B=∠

已知:△ABC是等边三角形,点D、E分别在AB、AC上,且DE//BC.

∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.

等边三角形ABC中,点D.E分别在边BC,AC上,且|BD|=1/3|BC|,|CE|=1/3|CA|,AD,BE相交于

连结DE则ΔEDC为直角三角形且∠EDC=30º再证ΔABD≌ΔBEC从而得到∠AEP=∠ADC,∠APC=∠C=60º所以PDEC四点共圆(∵∠DPE=∠PBD+∠BDP=∠DA

等边三角形ABC中,点D.E分别在边BC,AC上,且|BD|=1/3|BC|,|CE|=1/3|CA|,AD,BE

-A△CB|BD|=1/3|BC||BD|/|BC|=1/3|BD|=1;|BC|=3(CE/CA也是同样的道理)|AD|=|BC|+|CA|+1/3|BC|=4/3|BC|+|CA||BE|=1/3