等边三角形ABC中,P点在,且BP=2PC,作BD垂直于BP于D,求BD
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:50:34
易证明三角形APB与CQA全等,所以角ABP=角CAQ而角AMP=角ABP+角BAM角BAM+角CAQ=角A=60所以角AMP=60所以角NMQ=60又因为MN=MQ所以MNQ为等边三角形得证.
因为,AB=AC,角BAC=角ACQ=60度,AP=CQ,所以三角形BAP≌三角形ACQ.由此可知,角ABP=角CAQ.因为,角NMQ=角ABP+角BAM,即角NMQ=角CAQ+角BAM=60度,因为
∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,又∵QR⊥AC,∴∠CQR=30°∠PQB=∠PQC=90°∴∠PQR=60°同理∠QPR=∠PRQ=60°∴三角形PQR为等边三角形
(1)∵等边△ABC,∴∠A=∠ACB,AC=AB,又∵AD=CE,∴△ADC≌△CEB(2)∵△ADC≌△CEB∴∠ACD=∠EBC(3)60°∵∠ACD=∠EBC∴∠DPC=∠EBC+∠BCD=∠
证明思路:只要证明三角形PRQ三个内角想相等即可.在三角形APR中:
(1)由题意可知ABPC四点共圆,所以∠APC=∠ABC=60°,在PA上取PD=PC,所以△PCD是正三角形,所以CD=CP,∠ACD=60°-∠BCD=∠BCP,又因为AC=BC,所以△ACD≌△
120度因为AC=BC角A=角CAD=CE所以三角形BCE全等三角形ADC推出角ADC=角CEB因为角A+角ADC+角DPE+角BEA=360度所以60+角ADC+角DPE+(180-角CEB)=36
D在BC上吧?∵△ABC是等边三角形∴AB=BC,∠C=∠ABC=60°∵BD=CE∴△ABD≌△BCE(SAS)∴∠CBE=∠BAD∴∠APE=∠ABP+∠BAP=∠CBE+∠ABP=∠ABD=60
由AE=CD,∠BAE=∠C=60°,AB=CA得△BAE≌△ACD.那么,∠AEB=∠ADC.由外角性质可知∠AEB=∠C+∠CBE=60°+∠CBE.∠ADC=∠BPQ+∠CBE,由以上两式易知,
在三角形DCA和三角形EBC中:角DAC=角ECB=60AC=BCAD=CE所以三角形DCA和三角形EBC全等所以角ACD=角EBC因为角BFC是三角形PEC的外角,所以角BPC=角PEC+角PCE而
△BCE和△ACD是相似三角形∠CBE=∠ACD∠BDC=60°+∠ACD∠BPC=∠ABE+∠BDC=60°-∠CBE+60°+∠ACD=120°
如图:∠AOP+∠COD+∠POD=180°(平角为180°)∠CDO+∠COD+∠C=180°(三角形内角和为180°)从而:∠AOP=180°-(∠COD+∠POD)(等量代换)∠CDO=180°
∠bpd=60°在等边△abc中ac=bc,∠acb=∠bac=∠acd+∠bcd=60°又ad=ce所以△acd≌△cbe(边角边)所以∠acd=∠cbe∠bpd是△bcp的外角∠bpd=∠bcd+
因为:BD=CE又因为:AC=BC所以:AE=CD三角形ABE与三角形ACD中,AE=CDAB=AC角BAE=角ACD所以,三角形ABE与三角形ACD全等,所以有:角ABE=角CAD角APE=角ABE
当OP平行于BC,OD平行于AB时满足条件,即AP=3
由题意可知:OD=OP∵△ABC是等边三角形∴ ∠B=∠A=60°, AC=AB=9又∵∠DOP=60°,∠AOP=∠AOD+∠DOP=∠B+∠BPO∴∠AOD=∠BPO∴△AOD
解,实际只有四点:三角形内1点,外4点.以⊿ABC的各边分别向外做正⊿ABP,⊿BCQ,⊿ACR,连接PC,AQ,BR交于一点O.则,P,Q,R,O为满足点.可以证明:OP,OQ,OR分别是AB,BC
解题思路:本题主要根据全等三角形的性质、等边三角形的判定进行解答解题过程: