等边三角形ABC中,D,E分别是AB,BC的中点,若将△BDE绕着点B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 11:37:19
给你点提示,小朋友1.看△ADC和△CEB等边三角形∠A=∠C=60度AC=CBAD=CE两边一夹角即可证全等提示结束2.∠CFE=∠CBE+∠FCB由1问∠CBE=∠ACD即∠CFE=∠ACD+∠F
(1)∵等边△ABC,∴∠A=∠ACB,AC=AB,又∵AD=CE,∴△ADC≌△CEB(2)∵△ADC≌△CEB∴∠ACD=∠EBC(3)60°∵∠ACD=∠EBC∴∠DPC=∠EBC+∠BCD=∠
证明:∵△ABC是等边三角形∴AB=BC=CA,∠A=∠B=∠C=60°∵AD=BE=CF∴AF=BD=CE∴△ADF≌△BED≌△CFE∴DF=ED=FE∴△DEF是等边三角形
解题思路:(1)根据等边三角形的性质证明△ABE≌△CAD就可以得出结论;(2)由三角形全等可以得出∠ABE=∠CAD,由外角与内角的关系就可以得出结论.解题过程:如图,已知△ABC为等边三角形,点D
证明:∵△ABC是等边三角形∴∠A=∠B=60°,AB=AC=BC∵AF=BD=CE∴AE=BF∴△AEF≌△BFD∴EF=FD同理可得ED=FD∴△EDF是等边三角形
分析:(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=
1:7连接FB因为AF=AC,所以S△FAB=S△ABC(等底同高);又因为BD=BA,所以S△FAB=S△FBD(等底同高),所以S△AFD=2S△ABC.而△AFB全等△BDE全等△CEF(易得)
∵△ABC是等边三角形∴∠A=∠ACB=60°,CB=AC∵AD=CE∴△ACD≌△BCE∴∠ACD=∠CBE∵∠BCP+∠ACP=60°∴∠PBC+∠PCB=60°∴∠BPC=120°
(1)看三角形ABD和三角形BCEBD=CEAB=BC角ABD=角BCE两边夹一角完全相等,所以此两个三角形完全相同.所以,角BAD=角CBE.(2)角AFD=角BFD;角BFD=180-角FBD-角
120度因为AC=BC角A=角CAD=CE所以三角形BCE全等三角形ADC推出角ADC=角CEB因为角A+角ADC+角DPE+角BEA=360度所以60+角ADC+角DPE+(180-角CEB)=36
D在BC上吧?∵△ABC是等边三角形∴AB=BC,∠C=∠ABC=60°∵BD=CE∴△ABD≌△BCE(SAS)∴∠CBE=∠BAD∴∠APE=∠ABP+∠BAP=∠CBE+∠ABP=∠ABD=60
原题是这个吧:在等边三角形ABC中,D,E分别是BC、AC上一点,AE=CD,AD与BE交与点F,AF=1\2BF.求证:CF垂直BE取BF中点P,连接CP交AD于Q则:AF=BF/2=BP因为:AE
1.证三角形ABD与三角形CAE全等,用边角边.AB=AC,BD=AE,60度角2.全等之后,角BAD=角ACE所以,角DAC=角ECB又角DFC=角DAC+角ACE,所以,角DFC=角ECB+角AC
60度三角形ADC全等于BEA角DAC=角ABE角BFD=角BAD+角ABE=角BAD+角DAC=60度
三角形ABC等边,于是AB=BC,∠ABD=∠BCE=60°,又BD=CE,所以△ABD≌△BCE(SAS),∠BAD=∠CBE,所以∠BPD=∠ABE+∠BAD=∠ABE+∠CBE=∠ABC=60°
∵DE//BC.∴∠ADE=∠B=60°∠AED=∠C=60°所以:△ADE是等边三角形.
1.设等边三角形ABC的边长为1,DE=x,那么CD=AE=1+x.过点E作BC的平行线交AD于F,那么三角形AEF是等边三角形,所以角DCB=角EFD=120度(1),且EF=AE=1+x,CF=D
因为是正三角形所以六边形是正六边形将六边形分成6个等边三角形(把所有对角线连起来)六边形边长为1,所以正三角形边长为1一个三角形面积:/2=根号3/26个就是3倍根号3答案就是3倍根号3(分数、根号不
证明:因为等边三角形ABC中,D,E分别为AC,BC的中点,所以AE⊥BC,BD⊥AC,∠CBD=30°,BD=AE又因为等边三角形BDF所以BF=BD,∠FBD=60°,∠BDF=60,所以BF=A