等边三角形ABC与CDE,角AMN为60度,求AM与MN的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 17:53:59
AF=BF+CF证明:以C为圆心,CF为半径做圆,交FD于点G(CF=CG)∵△ABC、CDE是等边三角形∴AC=BC,CE=ED,∠ACB=∠DCE=60°∴∠ACB+∠BCE=∠BCE+∠DCE即
图你会画吧`我就不弄了你画好图照着我说的看就可以了写在作业本上的那种形式我是不会说啦~首先开始画图等边三角形ABC角A/B/C各60度等边三角形CDE角C/D/E各60度等边三角形CDE点D在等边三角
旋转中心是点c,旋转方向:顺时针,旋转角度:60度.
证明:∵△ABC、△CDE为等边三角形∴AC=BC,CE=CD,∠ACB=∠ECD=60度∴∠BCE=∠ACD∴△BCE≌△ACD(SAS)∴∠CBE=∠CAD过C点分别作CM⊥BE,CN⊥AD,M、
证明:过点C作CG⊥AD于G,CH⊥BE于H∵等边△ABC,等边△CDE∴AC=BC,DC=EC,∠ACB=∠DCE=60∵∠ACD=∠ACE+∠DCE,∠BCE=∠ACE+∠ACB∴∠ACD=∠BC
1.AD=BE,∠AEB=60°,证明如下:∵ΔABC,ΔCDE是正Δ∴CB=CA,CE=CD,∠BCA=∠ECD=60°∴∠BCE=∠BCA+∠ACE=∠ECD+∠ACE=∠ACD∴ΔBCE≌ΔAC
右边那个三角形顶上应该是E吧?---------------------------------∵△ABC和△CDE为等边三角形∴AC=DC,∠ECD=∠2=∠1,BC=AC∴△EBC全等于△ADC∴
没图只解第一问因△ABC△CDE为等边△所以△BCD和△ACB中AC=BC,DC=EC又∠ACB=∠ACD=∠DCE=60所以∠BCD=∠ACE=120所以△BCD≌△ACBAE=BD
再问:谢啦再问:太给力了,你的回答已经完美的解决了我问题!
因为角BAC=DCE=60,则角BCD=60,即角ACD=BCE;又因CD=CE,AC=BC,则三角形BCE和ACD全等(边角边);即AD=BE
经鉴定,本题不但无图,而且无真相提问几乎一定应该是AD和BE夹角,图几乎一定是B、D在直线AE同侧,C在线段AE上,答案几乎一定是60°.我先按这个证明:设AD交BE于O,等边三角形说明∠DCE=∠A
∵,△ABC与△CDE都是等边三角形,∴∠A=∠B=∠ACB=60°∵EF//AB∴∠CEF=∠A=60°∠CFE=∠B=60°∴∠CEF=∠CFE=∠ECF=60°∴△CEF是等边三角形
相等因为角ACB=角DCE=60度角BCD=角BCD所以角ACD=角BCE又因为EC=DCAC=BC所以三角形ACD=三角形BCE所以AD=BE
1、观察△ACE与△BCD可见到AC=BC,CE=CD,∠ACE=60°+∠BCE=∠BCD,∴△ACE≌△BCD,得∠EAC=∠DBC,记AE与BC的交点为G,在△AGC与△BGF中,∠AGC与∠B
过C做CK⊥BE,CG⊥AD△BCE≌△ACD∠CAD=∠CBE△CBK≌△ACGCK=CG:∠BMC=∠DMC(到一个角两边距离相等的点在这个角的平分线上
∵△ABC和△CDE是等边三角形∴BC=AC,CE=CD∠BCA=∠DCE=60°∴∠BCA+∠ACE=∠DCE+∠ACE即∠BCE=∠ACE在△BCE与△ACE中BC=AC∠BCE=∠ACECE=C
∵∠ACB=∠ECD=60°,∴∠ACB+∠ACE=∠ECD+∠ACE,即∠ACD=∠BCE,又∵AC=BC,DC=EC,∴△ACD≌△BCE,∴AD=BE;作CP⊥AD于P,CQ⊥BE于Q,∵△AC
1)见左图∵ AC=BC,CE=CD,∠ACE=∠BCD=60°∴△ACE≌△BCD∴AE=BD 2)见右图,旋转角度后,∠ACE=∠ACB+∠ECE=∠ECE+60°∠BCD=∠
证明:∵△ABC和△CDE都是等边三角形∴BC=AC,CD=CE,∠ABC=∠DCE=60°∴∠BCD=∠ACE∴△BCD≌△ACE(SAS)∴BD=CE