等边三角形ABC CD=BF以AD为边做等边三角形ADE

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 08:00:51
等边三角形ABC CD=BF以AD为边做等边三角形ADE
如图,三角形ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE.

点D在BC中点时,四边形CDEF是平行四边形,且∠DEF=30°证明:∵设点D在BC中点∴AD是△ABC的中线∴AD平分∠BAC又∵△ABC是等边三角形∴∠BAD=∠CAD=1/2∠BAC=30°∵C

如图三角形abc为等边三角形,d,f分别为bc,ab,上的一点,且cd=bf,以ad边作等边三角行ade.

证明:(1)∵△abc为等边三角形∴BC=CA,∠FBC=∠DCA=60º又∵BF=CD∴△ACD≌△CBF(2)首先证明当D在线段上任意一点上时,四边形CDEF都为平行四边形.∵△ABC,

三角形ABC为等边三角形,D、F分别是BC、CD上的点,且CD=BF,以AD为边做等边三角形.证三角形ACD全等三角形C

你的题打错了,应该是D、F分别是BC、AB上的点.如果是这样的话,那过程如下:证明:∵△ABC是等边三角形∴AC=BC∠B=∠ACB在△ACD和△CBF中,AC=BC(已证)∠ACD=∠CBF(已证)

如下图,△ABC为等边三角形,D.F分别为BC,AB,上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,

如图,已知△ABC是等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边△ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

如图,△ABC为等边三角形,D.F分别是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE

1、在△ACD和△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2、1)四边形CDEF为平行四边形,理由如下设AB与ED交于G∵△ABC为正三角形∴AC=BC,∠B=∠A

如图,△ABC是等边三角形,D,F分别是AB,BC上的点,且AD=BF,以AF为一边画等边三角形AF为一边画等边三角形A

相等因为△ABC和△AEF是等边三角形所以∠BAC=∠EAF=60°所以∠BAC-∠BAF=∠EAF-∠BAF所以)∠CAF=∠BAE(2)△ADC全等于△BFA△BCD全等于△CAF△FBE全等于△

如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.

证明:(1)由△ABC为等边三角形,AC=BC,∠FBC=∠DCA,在△ACD和△CBF中,AC=BC∠DCA=∠FBCCD=BF,所以△ACD≌△CBF(SAS);(2)当D在线段BC上的中点时,四

如图,三角形ABC为等边三角形,D,F分别是BC,AB上的点,且CD=BF,以AD为边作等边三角形ADE

1,在△ACD,△CBF中CD=BF∠C=∠B=60°AC=BC∴△ACD≌△CBF(SAS)2,当D在线段BC上的中点时,四边形CDEF为平行四边形,且角DEF=30度按上述条件作图连结BE,EF在

如图,△ABC为等边三角形,D,F分别为BC,AB上的一点,且CD=BF,以AD为边作等边三角形ADE

证明:连结BE.因为三角形ABC和三角形AED都是等边三角形,所以AB=AC,AE=AD,角EAD=角BAC=60度,角ACB=60度,角ABC=60度,所以角EAB=角DAC,所以三角形EAB全等于

如图,△ABC为等边三角形,D、F分别为CB、BA上的点,且CD=BF,以AD为一边作等边三角形ADE

易证△ACD≌△CBF∴AD=CF又等边三角形ADE∴AD=DE∴CF=DE且由内错角相等易证CF‖DE∴四边形CDEF是平行四边形

如图,△ABC为等边三角形,D,F分别为BC,AB上的一点,且CD=BF,以AD为边作等边△adf.

1)、如图(1),当D点运动到BC的中点时,X=90°;(2)、如图(2),当D点运动到C点(与C点重合)时,X=30°,这时X的最小值;(3)、如图(3),当D点向C点慢慢运动时,越接近C点,∠1由

△ABC为等边三角形,D、F分别是BC、AB上的一点,且CD=BF,以AD为边作等边三角形ADE.

(1)证:AC=CB∠ACD=∠CBF=60°CD=BF根据边角边定理.就全等了(2)AD=DE由①问得AD=CF∴FC=DE四边形CDEF为平行四边形且对角线还相等那么CDEF只能是矩形∴△BDF为

等边三角形ABC,D、F是BC、AB上的点,且CD=BF,以AD为边作等边三角形ADE,求证:四边形CDEF是平行四边形

因为CD=BF所以,AF=BD∠BAD=∠CAFBA=CA所以,△BAD≌△CAF所以,AD=CF而由等边三角形ADE知:AD=DE所以,DE=CF∠BCF=∠BCA-∠CAF=60-∠CAF=60-

在等边△ABC中D、F分别为CB、BA上的点且CD=BF以AD为边作等边三角形ADE.

(1)证明;:因为三角形ABC是等边三角形所以角BAC=60度角ABC=角ACB=60度BC=AC因为BF=CD所以三角形ACD和三角形CBF全等(SAS)(2)证明;因为三角形ACD和三角形CBF全

已知三角形ABC(1)分别以BC、AC为边在处边作等边三角形BCE、ACF.分别连接BF、AE.求证BF=AE

BCE、ACF是等边三角形,所以AC=FC,BC=CE,角FCA=BCE所以角FCB=ACE所以三角形FCB和三角形ACE全等.所以BF=AE.

1如图,已知ΔABC为等边三角形,D、F分别为BC、AB边上的点,CD=BF,以AD为边作等边ΔADE .

(1)△ACD≌△CBF证:∵△ABC为等边三角形∴AC=BC∠ACD=∠B=60°∵CD=BF∴△ACD≌△CBF(SAS)(2)四边形CDEF为平行四边形∵△ACD≌△CBF∴∠DAC=∠BCF,