等边△ABC和等边△CBD的边长均为2,现把

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:48:14
等边△ABC和等边△CBD的边长均为2,现把
一道初二几何证明题.已知:如图,分别以Rt△ABC的两条直角边AB,AC为边作等边△ABE和等边△BCF,分别连结EF,

(1)、△BCE≌△BFE说理如下:∠CBE=∠CBA+∠ABE=150°∠EBF=360°-∠CBF-∠CBA-∠ABE=150°∴∠FBE=∠CBE∵BC=BFBA=BE∴△BCE≌△BFE(2)

已知:如图,分别以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,分别联结EF,EC

1.△EBC≌△EBF证明:因为等边三角形ABE,CBF所以角ABE=60度,角CBF=60度,BC=BF所以角EBC=90+60=150度角EBF=360度-角CBE-角CBF=150度,角EBF=

已知:如图,分别以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,连接EF,EC,请说明EF=EC

题目可以转换证明三角形EBF全等于三角形EBC,ABC+ABF+CBF+EBF=360,其中ABC=90,ABF=CBF=60,所以,EBF=150,又因为EBC=ABE+ABC=150,所以EBC=

已知:如图,分别以Rt△ABC的两条直角边AB、BC为边作等边△ABE和等边△BCF,分别连接EF,EC.

1、△CBE全等于△FBE证明:∵Rt△ABC∴∠CBA=90∵等边△BCF∴∠CBF=60°,BC=BF∵等边△ABE∴∠ABE=60°∴∠CBE=∠CBA+∠ABE=90°+60°=150°∴∠F

如图:在Rt△ABC中,∠ACB=90°,∠BAC=30°,分别以AB,AC为边,在△ABC的外侧作等边△ABE和等边△

在△EGF和△DAF中,∵GE=EB×sin60°=AB×sin60°AD=CA=AB×sin60°∴GE=AD又∵∠GFE=∠AFD(对顶角),∠DAF=∠BAC+∠CAD=30°+60°=90°=

如图所示,在△ABC中,∠C=90°,∠A=30°,分别以AB,AC为边在△ABC外侧做等边△ABE和等边△ACD,DE

证:作EG⊥AB交AB于点G∵EG⊥AB∴∠FGE=90°=∠BCA∵等边△ABE∴AB=AE∴Rt△ABC≌Rt△EAG(HL)∴AC=EG∵等边△ACD∴AC=AD=EG,∠CAD=60°∵∠CA

如图,等边△ABC和等边△AEF的一边都在x轴上,双曲线y=k/x(k>0)边OB的中点C和AE的中点D.已知等边△OA

(1)作BM垂直x轴CN垂直x轴则OM=2ON=1BM=2根号3CN=根号3所以C(1,根号3)代入y=k/x得k=根号3所以y=根号3/x(2)作EM1,DN1垂直X轴设AN1=a,则AM1=2aE

已知如图ABC三点共线,以AB、BC为边,分别作等边△ABD和△BCE.

(1)在△ABE和△DBC中,有DB=AB,BE=BC(等边三角形),∠ABE=∠DBC=120°∴△ABE≌△DBC(SAS0∴AE=CD(2)因题意,∠MBN=60°(180°-60°-60°)又

已知,△ABC为等边△,D和E是射线BC,CA上的点,且BD=CE.

图一因为三角形ABC是等边三角形所以AB=BC角ABD=角BCE=60度因为BD=CE所以三角形ABD和三角形BCE全等(SAS)所以角BAD=角CBE因为角BPD=角ABE+角BAD角ABD=角AB

四边形ABCD的一个内角是120° 连接AC 得到等边△ABC和直角三角形ACD 已知等边△ABC的边长为2

BC边上的高为根号3.面积为根号3/2.求赞再问:˵��һ����Ȼ�Ҳ�֪����ô���ѵ���д���������Ǵ���==再答:���AΪ120����ΪABC�ǵȱ�����Σ�����ֱ

如图,D,E分别为等边△ABC的边BC和BA的延长线上,且BD=AE=CF.求证:EC=ED

证明:延长CD到F,使DF=BC,连结EF∵AE=BD∴AE=CF∵DABC为正三角形∴BE=BF角B=60°∴DEBF为等边三角形∴角F=60°EF=EB在DEBC和DEFD中EB=EF(已证)角B

如图所示,在△ABC中,分别以AB、AC、BC为边在BC的同侧做等边△ABE,等边△ACD,等边△BCF

易证△ABC≌△EBF∴EF=AC=AD易证△ABC≌△DFC∴DF=AB=AE∴四边形ADFE为平行四边形

C为线段AE上的一点,分别以AC,CE为边在AE的同侧作等边 △ABC和等边△CDE,连接AD,BE交于点F.

由已知条件可得△BCE与△ACD全等,所以∠DAE=∠EBC.在AD上取一点G使得∠ABG=∠EBC,连接BG.则∠ABG=∠EBC=∠DAE.可证△BGF为等边三角形,根据三角形外角等于不相邻内角和

△ABC是等腰三角形,AB=AC,分别以两腰为边向外作等边△ADB和等边△ACE,若∠DAE=∠DBC,则∠BAC的度数

∵AB=AC,∴∠ABC=∠ACB,故2∠ABC+∠BAC=180°,∵等边三角形各内角为60°,∠DAE=∠DBC,∴120°+∠BAC=60°+∠ABC,又∵2∠ABC+∠BAC=180°,∴∠B

已知:如图,在Rt△ABC中,∠C=90°,∠A=30°,分别以AB、AC为边在△ABC的外侧作等边△ABE和等边△AC

证明:过E作EG丄AB于G,如图,∵△ABE为等边三角形,∴BG=12AB,∠ABE=∠BEA=∠EAB=60°,AE=AB,∵Rt△ABC中,∠C=90°,∠A=30°,∴BC=12AB,∴AG=B

一道中考复习题 如图,等边直角△ABC和等边△AEf都是半径为R的圆的内接三角形.

△ABC是等边直角,AB为直径,取中点(圆心o)连接OF,AB=2R因为△AEF是正三角形,所以∠EAF=∠AFB=60°连接BE,AB是直径,所以∠AEB=90°所以∠FEB=30°由相似得∠EAB

已知D、E分别是等边△ABC内、外的点,且AD=DB,BE=AB,∠CBD=∠EBD,求∠E的度数

60  再问:过程亲。。这才是重点再答:  首先△ABC等边。  1.AD=DB,得出D在垂直平分线CD上,  2.BE=AB,AB=BC,得出BE=BC,又∠CBD=∠EBD,得