等边△ABC中,P为AC上一点,Q为边AC上一点,且AP=CQ,M为PQ的中点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:57:29
设△ABC的边长为x,∵△ABC是等边三角形,∴∠DCP=∠PBA=60°.∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∠APD=60°,∴∠BAP=∠CPD.∴△ABP∽△CPD.∴BPDC
/>∵PE⊥PD,CE⊥CD∴P,E,C,D四点共圆,同弧所对的圆周角相等∴∠DEP=∠DCP∵ΔABC是正Δ∴∠ACB=60°∵AC⊥DC∴∠DCP=90°-∠ACB=30°∴∠PED=30°在Rt
这个题用相似(1)角ACB=60度,角APC=角ABC=60度,角PAC=角CAE所以三角形PAC相似与三角形CAE所以PA:AC=AC:AE,即AC^2=PA*AE,AC=AB(2)角BPE=角BC
第一小问角度有点问题,好像再问:斜的。你几年级啊。字。真不怎么样,不过还是谢谢了。再答:字写得丑啊?是,我的字确实写起来乱七八糟,哈哈
由于∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD所以∠BAP=∠CPD又∠ABP=∠PCD=60所以ABP和PCD相似AB/CP=BP/CD,即是3/2=1/CD.
∵等边三角形ABC∴AB=BC=AC∠ABC=∠BCA=60°∵CD=AE∴BD=CE在三角形ABD和三角形BCE中AB=BC∠ABD=∠BCEBD=CE∴△ABD≌△BCE∴∠BAD=∠CBE∵∠C
设△ABC的边长为x,∵△ABC是等边三角形,∴∠DCP=∠PBA=60°∵∠APC=∠APD+∠DPC=∠BAP+∠ABP,∵∠APD=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴BPDC
∵△ABC是等边三角形,∴∠B=∠C=60°,∵∠APB=∠PAC+∠C,∠PDC=∠PAC+∠APD,∵∠APD=60°,∴∠APB=∠PAC+60°,∠PDC=∠PAC+60°,∴∠APB=∠PD
(1)证明:过E作EF∥BA交AC的延长线于F点,如图,∵△ABC为等边三角形,∴∠A=∠ACB=60°,AB=AC,∴∠F=60°,∠ECF=60°,∴△CEF为等边三角形,∴EF=CE=CF,而A
过P做PF平行于BC交AC于F.则因为△ABC等边,PF∥BC,所以△APF等边.PF=AP=CQ又PF∥CQ,所以△PFD≌△CDQ所以DF=DC因为△PAF等边,PE垂直AF,所以E是AF中点,A
∵∠C=∠A=∠DOP=60°,OD=OP,∴∠CDO+∠COD=120°,∠COD+∠AOP=120°,∴∠CDO=∠AOP.∴△ODC≌△POA.∴AP=OC.∴AP=OC=AC-AO=2.故答案
过P做BC的平行线至AC于F,易证△APF是等边三角形因为AP=PF,AP=CQ,所以PF=CQ因为△PFD与△QCD全等,所以FD=CD又因为PE⊥AC于E,所以AE=DE又因为AC=1,所以DE=
(1)过点P作AC的平行线交AB于E∵AC‖EQ∴∠EQC=60∵∠ACQ=120,∠ACB=60∴∠BCQ=60∴BC=QC∵AC=BC,∠ACB=∠BCQ∴ACP≌BQC∴AP=BQ
作PF∥AC交BC于F,因为△ABC是等边三角形,所以APFC是等腰梯形,∴FC=QC,PF=BP∴CD是ΔQPF的中位线,CD=PF/2=BP/2又∵∠A=60°,PF⊥AC∴AE=AP/2∴AE+
过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在
△ABP∽△PCD,BP/CD=AB/PC.你没说等边△ABC边长为几,没法求.再问:为3再答:BP/CD=AB/PC,1/CD=3/2,CD=3/2.
1.是∠APD=60°还有CD长为2/3吧!如果是这样的话:∵∠BAP=180°-∠ABC(即60°)-∠BPA∠DPC=180°-∠APD(即60°)-∠BPA∴∠BAP=∠DPC∵∠ABC=∠PC
三角形ABC的边长为3
题目应该是FQ(1)利用相似形原理可得,BE=x/2,CE=2-X/2,CF=1-X/4,AF=1+X/4,Y=1/2+X/8(2)X+Y=2时,P、Q重合,也就是1/2+9/8X=2,X=4/3再问
过P做BC平行线GH,设AG=2a则PE+PF=三角形AGH的高=根3/2AG=根3a设PF=xPE=根3a-xAE=2a-((根3a-x))/根3=a+x/根3阴影面积=1/2((根3a-x)(a+