等腰直角三角形ABC中, 证明 2 2 = 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:57:08
等腰直角三角形ABC中, 证明 2 2 = 2
等腰直角三角形ABC中,∠BAC=90°,BD平分∠CBA,CE垂直于BD交BD的延长线为点E,证明BD等于2CE

首先做辅助线,延长CE交BA的延长线于F因为角EBF=角EBC,BE=BE,角BEF=角BEC=90度所以三角形BEF和BEC全等所以BC=BF,CE=EF所以CE=1/2CF又因为角ABD+ADB=

怎么证明三角形ABC是等腰直角三角形

用四点共圆就很好证!用其他方法难度很大!∵∠ABC=∠ADC∴A、B、D、C四点共圆∴∠ACB=∠ADB=45°∵∠ABC=45°∴∠ABC=∠ACB=45°∴AB=AC,∠BAC=90°∴△ABC是

已知平面直角坐标系中,点A(1,4),B(4,3),C(2,2).试用向量法证明三角形ABC为等腰直角三角形

向量AC=(1,-2)向量BC=(-2,-1)l向量ACl=√[(1-2)^2+(4-2)^2]=√5l向量BCl=√[(4-2)^2+(3-2)^2]=√5所以向量AC=向量BC向量ACX向量BC=

在等腰直角三角形ABC中,AD⊥BC,PE⊥AB,PF⊥AC,求证:△DEF是等腰直角三角形

△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9

几何证明:如图,等腰直角三角形ABC中,∠C是直角,

取AB中点Q,连CQ∠C是直角,∠BAC的平分线AD,DE⊥AB所以AE=AC三角形ACQ与三角形AEF全等EF=CQAC^2=AB乘AQ=AB乘CQ=AB乘EFAC/EF=AB/AC=根2AC^2/

等腰直角三角形ABC中角A为直角,AD垂直BC,P为BC上一点,PE垂直AB,PF垂直AC,证明:三角形DEF为等腰直角

因为三角形ABC是等腰直角三角形,又AD垂直BC,所以AD=BD=DC因为AF=EPEP=EB所以AF=EB在三角形BED和三角形AFD中,由于AD=BD,角EBD=角FAD=45度,EB=AF所以三

如图,在等腰直角三角形ABC中,

证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH

三角形ABC中,已知(a平方+b平方)sin(A-B)=(a平方-b平方)sin(A-B) 证明三角形为直角三角形或等腰

a平方sin(A-B)+b平方sin(A-B)=a平方sin(A-B)-b平方sin(A-B)(2*b平方)sin(A-B)=0b平方>0(b是边B的长,所以不为0)所以sin(A-B)=0所以A-B

三角形ABC中,(sinA)^2+(sinB)^2+(sinC)^2=2,证明ABC为直角三角形

(sinA)^2=(1-cos2A)/2(sinB)^2=(1-cos2B)/2(sinC)^2=(1-cos2C)/2原式可化为3-cos2A-cos2B-cos2C=4cos2A+cos2B+co

如图,在等腰直角三角形ABC中.

连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5

证明ABC是直角三角形

因为AD=DC所以∠A=∠ABD因为BD=CD所以∠C=∠DBC因为∠A+∠ABD+∠DBC+∠C=180°所以∠ABD+∠DBC=90°即∠ABC=90°所以ABC是直角三角形

相似三角形 在等腰直角三角形ABC中,

证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A

abc是等腰直角三角形

连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13

在等腰直角三角形ABC中,

如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y

如图等腰直角三角形ABC

,没有图额,图在哪?

在等腰直角三角形ABC中,∠BAC的平分线交BC于E,EF⊥AC于F,FG⊥AB于G.证明:AB^2=2FG^2.

∵∠BAC的平分线交BC于E,∴∠BAE=∠FAE又∵∠B=∠AFE=90°AE=AE∴△ABE≌△AFE∴AB=AF∵AB=BC∠B=90°∴∠BAC=∠C=45°∵GF⊥AB∴∠AGF=90°∴∠

如图,在等腰直角三角形ABC中

反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD

已知三角形三个定点ABC坐标 证明三角形ABD是等腰直角三角形

两点坐标距离公式求的AB=根号下{[(3-(-1)]2+(1-2)2}=根号17BC=根号下{(3-2)2+[(1-(-3)]2}=根号17AC=根号下{[2-(-1)]2+(-3-2)2}=根号34