等腰△ABC中
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 11:58:55
过A作AD⊥BC于D,因为△ABC为等腰三角形,D平分BC.所以DB=3.AD=√(AB^2-DB^2)=4所以sinB=AD/AB=4/5cosB=DB/AB=3/5tanB=AD/DB=4/3
应是“求证:BE是AD的一半"延长BE交AC的延长线于点F,则有AE垂直平分BF,得BE=EF,BF=2BE角CAD=角DBE=22.5度,AC=BC,角ACB=角BCF=90度所以三角形ACD全等于
△ABC是等腰三角形,AD⊥BC,AB=AC∴AD平分∠BAC∵DE⊥ABDF⊥AC∴DE=DF(角平分线上的点到角两边距离相等)在四边形AEDF中,∠EAF=∠AED=∠AFD=90°∴∠EDF=9
过点A作BC的垂线交BC于点D,因为AB=AC,AD垂直于BC所以AD为BC的垂直平分线所以BD=1/2BC=6所以AD=8所以sinB=AD/AB=8/10=4/5cosB=BD/AB=6/10=3
证明:在RT△AHG和RT△CEG中:∠AHG=∠CEG=90°∠AGH=∠CGE(对顶角)∴RT△AHG∽RT△CEG(角角)∴∠GAH=∠GCE∵CH⊥AB,△ACB是斜边为AB的等腰RT△∴AH
证明:∵AB=AC,∴∠ABC=∠ACB又BC=BC∴直角△BCD全等于直角△CBE,(在两直角三角形中,一条直角边和斜边对应相等,则这两个直角三角形全等.这是全等三角形的判定定理)∴BE=CD∴AE
根据三角形面积=二分之一底乘高,可知高为(100√3/3)×2÷20=10√3/3由于底边长20,因此从顶点做底边垂直平分线后,底边的一半长10,因此底角为arctan[(10√3/3)/10]=30
证明:把三角形ABC沿C点旋转,使得CB’和CA重合,由角BCA=角ECD可知,最后旋转的CA’和CD是在一条直线上的.(旋转后点A和点B’是重合的)(现在证明三角形ABE和三角形A’AD全等就可以得
设O为△ABC外接圆的圆心,连接AO,且延长AO交BC于D,连接OB、OC,∵AB=AC,O为△ABC外接圆的圆心,∴AD⊥BC,BD=DC(三线合一),BD=DC=12BC=5,设等腰△ABC外接圆
(1)取AC中点为M,连接PM,DM∵D是AB中点∴DM//BC∵BC⊥AC∴AC⊥DM∵ΔPAC是等边三角形,M是AC中点∴AC⊥PM,又PM∩DM=M∴AC⊥平面PDM∵PD在平面PDM内∴AC⊥
连接BD,分别用ASA证明△BDE≌△CDF,△BDF≌△ADE,即可将边CF转换为BE,AE转换为BF,在Rt△BEF中,用勾股定理求得EF=5
证明:△ABC为等腰直角三角形,所以∠A=∠B=45∠DME=45,所以∠AMD+∠BME=135∠AMD+∠ADM=180-∠A=135所以∠BME=∠ADM又有∠A=∠B所以△AMD∽△BEM,A
解题思路:根据勾股定理求AB、BD的长解题过程:附件最终答案:略
(1)作出CD, &n
解题思路:由于∠C=90°,BC=4,AC=4,易知△ABC是等腰直角三角形,于是∠ABC=45°,又△A′B′C′是△ABC平移得到的,那么∠C=∠A′C′B′=90°,进而可求∠BOC′=45°,
1.延长CE交BA的延长线于点F证△BCE≡△BFE(SAS)CE=EF=CF/2∠ABE=∠FCA=90°-∠F得△ABD≡△ACF∴BD=CF=2EC2.证明:延长FD到M使DM=DF得△BFD≡
如图:(x-c)²+y²=9.x²+(y-c)²=7. x²+y²=1.消去x,y
证明:(1)∵△EDC∽△ABC(1分)∴BCDC=ACEC,∠ECD=∠ACB(2分)∴∠ACE=∠BCD(1分)∴△ACE∽△BCD(2分);(2)根据(1)得∠EAC=∠B(1分)∵AB=AC(
反复运用勾股定理、等量代换就可以了.PA²=(AD+PD)²1PB²=(BD-PD)²2其中AD=BDPC²=CD²+PD²=AD
因为等腰直角三角形的斜边为10cm,所以斜边上的高为12×10=5(cm),所以三角形的面积=12×10×5=25(cm2).答:△ABC的面积是25cm2.故答案为:25.