等差数列{an}的前n项和为Sn,已知am-1 am 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:42:43
等差数列{an}的前n项和为Sn,已知am-1 am 1
设等比数列an的公比为q,前n项和为sn,若s(n+1),sn,s(n+2)成等差数列,求q的值

若q=1,则S(n+1)=n+1,Sn=n,S(n+2)=n+2,此时S(n+1),Sn,S(n+2)不成等差数列所以q≠1,则Sn=a1*(1-q^n)/(1-q)a1*[1-q^(n+1)]/(1

设等比数列 {an} 的公比为q,前n项和为Sn,若S(n+1),Sn,S(n+2)成等差数列,则q=

a(n)=aq^(n-1),n=1,2,...若q=1.则s(n)=na,n=1,2,...s(n+1)+s(n+2)-2s(n)=(n+1)a+(n+2)a-2na=3a不等于0,矛盾.因此,q不为

sn为等差数列,{an}的前n项和已知s6=36,sn=324,S(n-6){注,角标}=144(n大于6),求n

S6=(a1+a6)*6/2=362a1+5d=12Sn-S(n-6)=180即[a(n-5)+an]*6/2=180最后6项的和是6an-15d=1802an-5d=60相加2(a1+an)=72S

已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs

等差数列{an}的前n项和为Sn,已知S6=36,Sn=324,S(n-6)=144(n>6),则n为多少?

因为Sn=324,s(n-6)=144所以最后六项和=324-144=180=a(n-5)+a(n-4)+,+an又S6=36=a1+a2+,+a6两侧同时相加,有6(a1+an)=216a1+an=

设等差数列{an}的前n项和为Sn,且S

因为a1=S1=(a1+12)2,所以 a1=1.设公差为d,则有a1+a2=2+d=S2=(2+d2)2.解得d=2或d=-2(舍).所以an=2n-1,Sn=n2.所以 bn=

设等差数列{an}与{bn}的前n项之和分别为Sn与S

∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−

设Sn为等差数列{an}的前n项和,已知s6=36,Sn=324 ,S(n-6)=144 ,(n>6) ,求n的值

等差数列前n项和Sn=na1+n*(n-1)*d/2n=6时S6=6a1+6*5*d/2S6=6a1+15d36=6a1+15da1=6-(5/2)dSn=na1+n*(n-1)*d/2=324将a1

等差数列{an}.前n项和为Sn.

唉,你太粗心了吧~我给你修正下(向我现在这样的好人不多了哈哈~!)Sm/Sn=(m^2)/(n^2),求am/an?对吧,很简单的呦am/an=2am/(2an)=a1+a2m-1/(a1+a2n-1

设等差数列{an}的前n项和为s,已知a3=12,S12>0,S13

显然的有d060+12*7+42d>0即d>-24/7类似的有156+52d

已知两个等差数列{an},{bn}的前n项的和分别为Sn,Tn,且S

令n=9,得到S9T9=7×9+29+3=6512,又S9=9(a1+a9) 2=9a5,T9=9(b1+b9) 2=9b5,∴S9T9=9a59b5=a5b5=6512.故答案为

等差数列{an},{bn}的前n项和分别为Sn和Tn,若S

∵SnTn=2n3n+1,∴anbn=a1+a2n−1b1+b2n−1=S2n−1T2n−1=2(2n−1)3(2n−1)+1=2n−13n−1∴limn→∞anbn=limn→∞2n−13n−1=l

两等差数列{an}和{bn},前n项和分别为Sn,Tn,且S

在{an}为等差数列中,当m+n=p+q(m,n,p,q∈N+)时,am+an=ap+aq.所以a2+a20b7+b15=21×(a1+a21)×1221×(b1+b21)×12=S21T21,又因为

已知{an}是首项为19,公差为-2的等差数列,Sn为{An}的前n项和,(1)求通项a、b及前n项和S

1.通项:an=19+(n-1)*(-2)=21-2nSn=(a1+an)n/2=(19+21-2n)n/2=-n²+20n2.bn-an=3^(n-1)bn=21-2n+3^(n-1){b

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

若两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,且满足S

由等差数列的通项公式可得a2+a5+a17+a22b8+b10+b12+b16=2(2a1+21d)2(2b1+21d′)=a1+a22b1+b22=22(a1+a22)222(b1+b22)2=S2

已知等差数列{an}{bn}的前n项和分别为Sn,Tn,若S

∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214

两个等差数列{an}和{bn}的前n项和分别为Sn和Tn,若S

∵SnTn=7n+3n+3∴a8b8=2a82b8=a1+a15b1+b15=152(a1+a15)152(b1+b15)=S15T15=7×15+315+3=6故答案为:6

若两个等差数列{an},{bn}的前n项和分别为Sn,Tn,且满足S

由题意可得S14T14=14(a1+a14)214(b1+b14)2=2a72b7=a7b7=3×14+24×14−5=4451,故答案为:4451.