等差数列an与等差数列bn,a11比b11等于4比3,算前21项的和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 21:44:27
等差数列an与等差数列bn,a11比b11等于4比3,算前21项的和
已知数列【an】是首项为a,公差为1的等差数列,数列【bn】满足

即对任意n∈N,(a+n)/(a+n-1)≥(a+8)/(a+7)两边同减1:1/(a+n-1)≥1/(a+7)此不等式可分三种情况:(1)a+7≥a+n-1〉0显然n≥8时不成立(2)0〉a+n-1

两个等差数列{an},{bn},a1+a2+a3+...+an/b1+b2+b3+...+bn=7n+2/n+3. 则a

当an,bn各取前9项时a1+a2+a3+...+a9/b1+b2+b3+...+b9=7*9+2/9+3.=65/12a5,b5是等差中项a5/b5=a1+a2+a3+...+a9/b1+b2+b3

已知等差数列{an}中,a1=a,公差d=1,若bn=an^2-a(n-1)^2,试判断数列{bn}是否为等差数列

{bn}是等差数列因为,bn=an^2-a(n-1)^2=[an+a(n-1)][an-a(n-1)]=an+a(n-1)所以,b(n+1)-bn=a(n+1)+an-an-a(n-1)=a(n+1)

已知{an}是等差数列,bn=kan+m(k,m为常数).求证{bn}是等差数列

∵{An}是等差数列∴An-A(n-1)=d(d为公差)∵Bn=kAn+m∴B(n-1)=kA(n-1)+m∴Bn-B(n-1)=kAn+m-[kA(n-1)+m]=k[An-A(n-1)]=kd这个

已知等差数列{an},a1=a,公差d=1.若bn=an^2-a(n+1)^2,试判断数列{bn}是否为等差数列.并证明

a=1,是等差数列,否则,不是.再问:过程?再答:an=a+(n-1),bn=a^2+2a(n-1)+(n-1)^2-a(n+1)^2=a^2+2a(n-1)+(1-a)(n-1)^2,若a=1,bn

已知两个等差数列{an}和{bn}的前n项和分别为An和Bn,且A

由AnBn=7n+45n+3,可设An=kn(7n+45)⇒an=An-An-1=14kn+38k,设Bn=kn(n-3)⇒bn=Bn-Bn-1=2kn+2k,所以a2n=28kn+38k,a2nbn

已知数列{bn}是等差数列,a>0,求证数列{an的b次方}是等比数列

an^bn/an^b(n-1)=an^[bn-b(n-1)]=an^d,这是个常数,所以是等比数列bn-b(n-1)=d再问:d是什么再答:公差啦,高二数学书丽有的再答:采纳我吧,3q了

设等差数列{an}与{bn}的前n项之和分别为Sn与S

∵{an}为等差数列,其前n项之和为Sn,∴S2n-1=(2n−1)(a1+a2n−1)2=(2n−1)×2an2=(2n-1)•an,同理可得,S′2n-1=(2n-1)•bn,∴anbn=S2n−

数列与不等式已知数列{an}是等差数列an=-2n+24,数列bn满足an=2log以a为底数,真数是bn,求使得bn>

这个题目可用倒推法解.首先,要使BN>1,那么LOG(AN)>1/2,换句话说也就是AN>10根据AN=-2N+24得,N

设an,bn都是等差数列,其中a1=3,b1=2,b2是a2与a3的等差数列,liman/bn=1/2,求lim(1/a

LZbn的通项公式求错了,bn=4n-2而不是bn=4n-1;你验证下b1就知道了所以1/anbn=1/[2*(2n-1)(2n+1)]=1/4*[1/(2n-1)-1/(2n+1)]所以1/a1b1

高一等比数列证明题,正数列{an}和{bn}满足,对于任意自然数n,an,bn,a(n+1)成等差数列,bn,a(n+1

a(n+1)=√[bn*b(n+1)]2bn=an+an+12bn=√[bn*b(n-1)]+√[bn*b(n+1)]2√bn=√b(n-1)+√b(n+1)所以数列{√bn}为等差数列

已知数列an是等差数列,且bn=an+a(n+1).求证数列bn是等差数列.

设an公差为d那么通过等差数列定义,只要bn-b(n-1)是常数bn-b(n-1)=an+a(n+1)-[a(n-1)+an]=a(n+1)-a(n-1)=2d所以bn是等差数列.

问道数学题.正数数列{an}和{bn}满足:对任意自然数n,an,bn,a(n+1)成等差数列,bn.a(n+1)成等比

你的题没打全吧应该是:正数列{an}和{bn}满足对任意自然数n,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列解析如下:a(n+1)=√[bn*b(n+1)]2bn=an+an+

已知正项数列{an},{bn}满足:对任意正整数n,都有an,bn,a(n+1)成等差数列,bn,a(n+1),b(n+

1、an,bn,a(n+1),所以,2bn=an+a(n+1)推出,2(bn+1)=a(n+1)+a(n+2)bn,a(n+1),b(n+1),所以,a(n+1)^2=bn*b(n+1),推出,a(n

已知数列{an}是等差数列,且bn=an+a(n-1),求证bn也是等差数列

设an=a1+(n-1)d,bn=an+a(n-1)=a1+(n-1)d+a1+nd=2a1+(2n-1)dbn为首项为2a1-d,公差为2d的等差数列

有一等差数列{an}和等比数列{bn},已知a1=b1=a>0,比较an+1与bn+1的大小?

解∵a+2nd=aq2n∴d=∴an+1-bn+1=a+nd-aqn=a+-aqn=a(1+q2n-2qn)令t=qn故原式=a(t2-2t+1)=a(t-1)2∵a>o∴当t≠1时an+1>bn+1

等差数列an中,a1=a,公差d=1,bn=an^2-a(n+1)^2,判断bn是否为等差数列

是an=a+n-1a(n+1)=a+nbn=1-2a-2nb(n-1)=1-2a-2(n-1)bn-b(n-1)=-2公差为-2

两个正项数列{an}{bn},an,bn^2,a(n+1)是等差数列,bn^2,a(n+1),b(n+1)^2是等比数列

1.a(n+1)^2=(bn^2)b(n+1)^2a(n+1)=bnb(n+1)2bn^2=an+a(n+1)=bnb(n-1)+bnb(n+1)2bn=b(n-1)+b(n+1)所以bn是等差数列;

已知数列{An}是等差数列,且Bn=An+A(n+1).求证数列{Bn}是等差数列

B(n+1)-Bn=A(n+1)+A(n+2)-An-A(n+1)=A(n+2)-An因为An是等差数列,所以A(n+2)-An=2d是一个与n无关的常数,所以Bn是等差数列