等价矩阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 00:18:43
等价矩阵
等价矩阵就是相似矩阵吗

是的矩阵相似的充分必要条件是有n个线性无关的特征向量既然等价那一定有n个线性无关的特征向量所以相似但反过来不成立

矩阵等价,矩阵相似,矩阵合同的区别与联系

等价一般是指可以通过初等变换变成另一个,本质上只需要两个矩阵秩相同就可以了.是个很宽泛的条件,应用不大.A相似于B,是存在非异矩阵P,使得PAP^-1=B,这个是线性代数或者高等代数里面最重要的关系,

矩阵:等价、相似、合同

不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:

求大神求矩阵的等价标准型

你这是用行变换化成了行最简形若继续化等价标准形,必须用列变换c3+c1+c2c5-4c1-3c2+3c4

线代求矩阵的等价标准型,_.)

20-1312-24013-1r2-2r3,r1-2r20015-910-86013-1r1*(1/15)001-3/510-86013-1c3+8c1,c4-6c1001-3/51000013-1用

矩阵A与其特征矩阵等价吗?为什么?矩阵等价与相似是什么关系?

相似必等价,等价未必相似A与A-λE不等价,因为等价的充分必要条件是秩相同

两个矩阵等价与两个矩阵行等价与列等价之间到底啥关系啊

矩阵的行(列)等价,则矩阵必等价反之不成立

什么是矩阵的等价标准型?

如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.

向量组等价于矩阵等价有什么关系? 秩相等的矩阵一定等价吗?

同型矩阵等价的充要条件是秩相等向量组等价需互相线性表示,充要条件是R(A)=R(A,B)=R(B)

向量组等价和矩阵等价的一道选择题

向量组的等价比矩阵的等价要求要高向量组等价则秩相同,反之不对矩阵等价秩相同,由此知B组的秩为m

线性代数等价矩阵什么条件下两个矩阵等价,两个矩阵一定要同型吗?

不一定的哦,两个矩阵等价说明这两个矩阵可以通过初等的行变换或者是列变换得到另外一个矩阵就可以了数学专业的再问:不同型的秩相等等价吗?再问:不同型的秩相等等价吗?再答:只要是形状相同的矩阵就一定是等价的

什么叫矩阵等价

广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系

线性代数:向量组等价与矩阵等价不是一回事吗

如果两个n维向量组等价,则以它们为列向量组成的矩阵A,B的秩相等,但是不一定等价,因为这两个矩阵的列数可能不同.比如,一个5行3列的矩阵与一个5行4列的矩阵根本谈不上等价与不等价.(如果A,B的列数相

等价矩阵相似么?相似矩阵等价么?

等价矩阵相似,相似矩阵不一定等价.

可逆矩阵的等价矩阵是否可逆

肯定可逆.首先告诉你一个结论就是等价矩阵的秩是相同的.A可逆则A的秩是N,则B的秩也是N即B的行列式不等于0,所以A可逆.等价矩阵的概念其实是一个矩阵A可以经过有限次的初等变化,转化为B,则称A与B等

向量组等价和矩阵等价有什么不同

两个矩阵A,B等价表示,A可经过有限次初等变换变成B 向量组等价表示,两个向量组可以相互表出 具体分析如下图: 再答:不客气,谢谢采纳

线性代数:向量组等价和矩阵等价的区别?

如果两个向量组可以相互线性表出那么他们就是等价的如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的

矩阵等价是什么意思

广泛意义的等价,是集合在某种变换下保持不变性.如:矩阵A与称为等价的,如果B可以是A经过一系列初等变换得到.矩阵在初等变换下是行列式不变的.在线性代数中,合同、相似都是等价关系再问:ʲô�Ǻ�ͬ���

等价标准矩阵是什么?

如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.再问:可