等价无穷小是不是说这两个无穷小是相等的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:16:00
不能用等价无穷小的原因是当x->0时2^x->1,具体算法是:再问:当成“常数”提出来啦?然后另外的式子再用等价无穷小?这样的思路对么?再答:当x->0时不为零,所以可以提出了,另外的式子
不可能不一样,一般都是洛比达出了问题,注意用的条件再问:再问:能帮我做下吗,用两种方法再答:0.5再问:过程,谢谢再答:再问:不能全部用等价无穷小替换吗再答:能用的感觉都用了啊再答:还有哪个再问:e^
等价无穷小的代换是有条件是,适用于乘法运算中,不适用于加减运算.一般教材中都会提到的,千万别随便代入哦.
根据定义:两个无穷小的和为无穷小.而根据三角不等式,两个无穷小的差的绝对值小于等于它们的和.根据定义,两个无穷小的差也是无穷小.
limf(x)/g(x)=c(c为常数)如果c=1,那么f(x)与g(x)是等价无穷小(此时其实也同阶);如果c≠0,那么f(x)与g(x)是同阶无穷小.等价无穷小是同阶无穷小的特殊情形.
当x→0时,sinx~tanx;1-cosx~0.5x²而lim【x→0】cosx=1,不是无穷小,所以不存在等价无穷小一说!如果考虑的是x→π/2,则由lim【x→π/2】cosx/[(π
sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x
为x^3/3!即x^3/6再问:怎么算的~~3的阶乘怎么出来的?再答:直接用泰勒展开式呀:sinx=x-x^3/3!+x^5/5!-...x-sinx=x^3/3!-x^5/5!+..再问:==谢谢啊
那是x趋于pi,不是0啊~再问:我知道了
sinx~xarcsinx~xtanx~xarctanx~x1-cosx~x方/2ln(1+x)~xe^x-1~x√(1+x)-1~x/2(1+x)^a-1~ax
X趋向于0时:sinx,tanx,arcsinx,arctanx,ln(1+x),e^x-1.a^x-1~xlna(a>o,a不等于1)1-cosx~(1/2)x^2(1+ax)^b-1~abx[n次
x当x趋于0
你不会时用1/x来代替sin1/x吧,那样就错了!因为x替代sinx.必须是x趋向0而本题中,x趋向0时,1/x是无穷大.所以本题这样考虑:sinx用x代替,化为:x^2*(sin1/x)/x=x*(
高数同济五版上面有的,写得很清晰,大致就是sinx~x这些简单的,直接用夹逼定理(当x趋近0时)就可得了.(夹逼定理证x→0时,sinx/x=1,这样就等价了)tanx=sinx/cosx代一代也可得
是的,上次就是我说的!
=limx(x^2+100-x^2)/[(x^2+100)^1/2-x]=100*limx/[-x(1+100/x^2)^1/2-x]=100*lim1/[-(1+100/x^2)^1/2-1]=10
重要的等价无穷小替换当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~1/2x^2a^x-1~xlnae^x-1~xln(1+x)~x(1+Bx)^a-1~aBx[
错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si