等价无穷小不能移项
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 23:22:12
加减不能等价替换说的是部分,如果把加减整体一块替换,有时候还是可以的,这个关键要看是不是等价无穷小,也就是说替换的因子和被替换的因子是不是等价无穷小比如说这道题,sinx+cosx能不能用1+x替换,
还是那个问题,加减法在作替换时要两个式子极限同时存在,一起作替换.1式显然三个式子极限都存在,所以可以.2式则进行了分步求极限,错误.其实,往深了说,本质是因为加减和乘除在运算意义上的地位是不相等的.
不能用等价无穷小的原因是当x->0时2^x->1,具体算法是:再问:当成“常数”提出来啦?然后另外的式子再用等价无穷小?这样的思路对么?再答:当x->0时不为零,所以可以提出了,另外的式子
第一道题拆分后的极限应该是存在的拆分后是0/0型罗比达用几次应该能出极限只是在对拆分后的极限进行分子分母化简后极限无穷大第二道题拆分后极限都是无穷大这种拆分是违法的=.=
等价无穷小的代换是有条件是,适用于乘法运算中,不适用于加减运算.一般教材中都会提到的,千万别随便代入哦.
当x→0时,sinx~tanx;1-cosx~0.5x²而lim【x→0】cosx=1,不是无穷小,所以不存在等价无穷小一说!如果考虑的是x→π/2,则由lim【x→π/2】cosx/[(π
sinx~xtanx~x1-cosx~x^2/2secx-1~x^2/2ln(1+x)~xe^x-1~x(1+x)^a~ax(a不等于0)arcsinx~xarctanx~x
这个不可以的,只有在完全乘法或除法的情况下,才可以用等价无穷小的替换再问:第二个x/sinx(cosx+x)~sinx/sinx(cosx+x)也不能等价是么?然后最后那道题呢。。如果是x/sinxc
为x^3/3!即x^3/6再问:怎么算的~~3的阶乘怎么出来的?再答:直接用泰勒展开式呀:sinx=x-x^3/3!+x^5/5!-...x-sinx=x^3/3!-x^5/5!+..再问:==谢谢啊
那是x趋于pi,不是0啊~再问:我知道了
sinx~xarcsinx~xtanx~xarctanx~x1-cosx~x方/2ln(1+x)~xe^x-1~x√(1+x)-1~x/2(1+x)^a-1~ax
X趋向于0时:sinx,tanx,arcsinx,arctanx,ln(1+x),e^x-1.a^x-1~xlna(a>o,a不等于1)1-cosx~(1/2)x^2(1+ax)^b-1~abx[n次
x当x趋于0
是的,上次就是我说的!
=limx(x^2+100-x^2)/[(x^2+100)^1/2-x]=100*limx/[-x(1+100/x^2)^1/2-x]=100*lim1/[-(1+100/x^2)^1/2-1]=10
重要的等价无穷小替换当x→0时,sinx~xtanx~xarcsinx~xarctanx~x1-cosx~1/2x^2a^x-1~xlnae^x-1~xln(1+x)~x(1+Bx)^a-1~aBx[
错在(2-2sin(x/2)*cos(x/2)/(x/2))=2(2-2cos(x/2))这一步你默认了sinθ/θ=1,实际上本题就是要求出sinθ的更高阶无穷小量,这样忽略“过头”了.事实是,si
等价无穷小替换求极限加减时候直接忽略,不用换;