积分上限2下限6F(x)dx,fx为,2-x,怎么求怎么计算的
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 04:31:02
设那个积分为F(x)则F(x)=∫(a→x)(x-t)f'(t)dt=x∫(a→x)f'(t)dt-∫(a→x)tf'(t)dt原式=F'(x)=1*∫(a→x)f'(t)dt+x*f'(x)-xf'
由题意可得:∫1/xdx=ln|x|+C所以原式=ln2-ln3=ln(2/3)
积分上是变元先拆分∫x[f(x)+f(-x)]dx=∫[-a,0]xf(x)dx+∫[0,a]xf(x)dx+∫[-a,0]xf(-x)dx+∫[0,a]xf(-x)dx对于第三第四个进行变元y=-x
∫f(x)lnxdx=arctanx+c等式左右对x求导,则f(x)lnx=1/(x^2+1)1/f(x)=lnx(x^2+1)∫dx/f(x)=∫lnx(x^2+1)dx=lnx[(x^3/3)+x
画图看二次积分的区域D={(x,y)|0≤x≤1,x≤y≤1}={(x,y)|0≤y≤1,0≤x≤y}于是∫(上限1,下限0)dx∫(上限1,下限x)siny^2dy=∫∫(D)siny^2dxdy=
∫(-1到1)dx/(x²+1)²=2∫(0到1)dx/(x²+1)²令x=tanz,dx=sec²zdz当x=0,z=0//当x=1,z=π/4=2
∫(0→1)dx∫(0→1)f(x,y)dy=∫(0→1)dy∫(0→1)f(x,y)dx积分限全是常数的话,直接换就行.
∫(0→1)dx∫(x→2-x)f(x,y)dy=∫(0→1)dy∫(0→y)f(x,y)dx+∫(1→2)dy∫(0→2-y)f(x,y)dx其中解y=x和y=2-x得交点(1,1),转为Y型时要分
积分区域由x=2,x=4,y=0,y=x+2围成∫(2,4)dx∫(0,x+2)f(x,y)dy=∫(0,4)dy∫(2,4)f(x,y)dx+∫(4,6)dy∫(y-2,4)f(x,y)dx
|(上限4,下限2)dx|(上限2,下限x/2)f()dy画个图,把积分区域表示出来,就很清楚了.再问:我就是不知道如何画图表示积分区域再答:又看了下,发现我答案有点问题,第二个下限应该是==根号x前
交换积分次序后是∫(0,√2/2)dx∫(0,x)f(x,y)dy+∫(√2/2,1)dx∫(0,√(1-x²))f(x,y)dy交换后的结果中的上下限,是由直线y=x和圆x²+y
原式=∫(-2到0)-xdx+∫(0到1)xdx=-x^2/2(-2到0)+x^2/2(0到1)=(0+2^2/2)+(1^2/2-0)=5/2
=∫(上限2,下限0)dx∫(上限3-x,下限X/2)f(x,y)dy再问:可以写下过程吗?再答:画出边界曲线,两块合成一块∫(上限1,下限0)dy∫(上限2y,下限0)f(x,y)dx的边界曲线:1
希望对你有用,祝你学习进步!
∫(上限1下限0)xf(x)dx=∫(上限1下限0)1/2f(x)dx^2=1/2x^2f(x)(0到1)-1/2∫(上限1下限0)x^2f'(x)dx=0-1/2∫(上限1下限0)x^2e^(-x^
∫dx∫f(x)f(y)dy=∫f(x)dx∫f(y)dy=∫[f(x)∫f(y)dy]dx=∫[∫f(y)dy]d[∫f(y)dy]凑微分,(从左到右)第二个积分上限是1,下限是x;第三个积分上限是
f(x)=sinx/(1+x^2+x^4)f(x)=-f(-x)∫[-1,1]f(x)dx=0
设f(x)=x^2+ax+b那么∫f(x)=1/3x^3+1/2ax^2+bx+C所以a=1/3+1/2a+b,b=8/3+2a+2b,解得a=6/5,b=4/15f(x)=x^2+6/5x+4/15
积分的区间是一个三角形,三个点分别为(0,0)(1,1)(2,1)原式=∫(0,1)dy∫(y,2y)e^2ydx上下限先这么写吧=∫(0,1)ye^2ydy后面用分部积分自己算吧