积分X比sinx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:21:25
把原式分母用1+cosx化为2cos^2(x/2)得x/[2cos^2(x/2)]和tan(x/2)的两项积分第一项化成(1/2)xsec^2(x/2)dx=(1/2)[xdtan(x/2)]用分部积
∫(x+sinx)/(1+cosx)dx=∫xdx/(1+cosx)+∫sinxdx/(1+cosx)=∫xd(x/2)/[cos(x/2)]^2+∫tan(x/2)dx=∫xdtan(x/2)+∫t
积分[e^x/2*(cosx-sinx)]/√cosxdx=积分2[1/2e^x/2*(cosx)^(1/2)-1/2e^x/2*sinx(cosx)^(-1/2)]dx=积分[2e^x/2*(cos
上网查分部积分法可以解决问题
此积分是一个不可能用初等函数表示的积分.也就是说,用初等手段是积不出来的,.唯一的解决办法就是把sinx展成无穷级数,然后逐项积分,其结果当然还是一个无穷级数,精度可人为指定:sinx=∑[n=1,∞
答案是0.积分后得-cosx+1/2x^2-1到1.楼上利用对称区间奇函数的积分为0的性质最快.厉害.
(17/4)+cos(1)其中cos里面的是弧度制的1而不是1度
对sinx泰勒展开,再除以x有:sinx/x=1-x^2/3!+x^4/5!+…+(-1)^(m-1)x^(2m-2)/(2m-1)!+o(1)两边求积分有:∫sinx/x·dx=[x/1-x^3/3
由分部积分将原积分化为2sinxcosx/x从0到无穷积分上式等于sin2x/x由变量替换可化为sinx/x从0到正无穷积分该积分为Dirichlet积分其值为pai/2,pai为圆周率至于Diric
先变形,后面一直用分部积分法:
(x+sinx)dx/1+cosx通分=(x+sinx)(1-cosx)dx/(1+cosx)(1-cosx)=(x-xcosx+sinx-sinxcosx)dx/sin^2x分别展开.能行么,也许把
sinx=x-x^3/3!+x^5/5!-x^7/7!+.+(-1)^kx^(2k+1)/(2k+1)!+.sinx/x=1-x^2/3!+x^4/5!-x^6/7!+.+(-1)^kx^(2k)/(
∫(sinx+cosx)e^xdx=∫(sinx+cosx)de^x=(sinx+cosx)e^x-∫(cosx-sinx)e^xdx=(sinx+cosx)e^x-∫(cosx-sinx)de^x=
∫[(1-cosx)dx]/(x-sinx)=∫d(x-sinx)/(x-sinx)=ln(x-sinx)+C原式=∫(x+1-4)dx/(x²+2x+3)=∫(x+1)dx/(x²
S=∫sinxdx(0,π/2)+∫(aX+2)dx(π/2,π)=-cosx|(π/2,0)+(0.5ax^2+2x)|(π,π/2)因为在x=0.5π时连续所以sin0.5π=aπ/2+2因为a*
分部积分法∫xsinxdx=-xcosx+∫cosxdx=-xcosx+sinx+C(C是积分常数)
=e^xsinx-∫e^xcosxdx=e^xsinx-∫cosxd(e^x)=e^xsinx-[e^xcosx-∫e^xd(cosx)]=e^xsinx-(e^xcosx∫e^xsinxdx)=e^
sinx/(sinx+cosx)=(tanxcosx)/(tanxcosx+cosx)=tanx/(tanx+1)令t=tanx,则dt=sec^2xdx=(1+tan^2x)dx=(1+t^2)dx
这个数分书上有原题呢,就是你把他等价,用用那个积分u'v=uv-积分uv',最后积分这边出来一样的,移项,完了就解出来了
要用到分部积分.因为∫(sinx)^3dx=∫((cosx)^2-1)dcosx=(cosx)^3/3-cosx所以∫x(sinx)^3dx=∫xd[(cosx)^3/3-cosx]=x[(cosx)