积分0到2 π sin²x dx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 20:53:07
1,xln(1+x^2)-∫2x^2/(1+x^2)dx=xln(1+x^2)-2∫(1-1/(1+x^2))dx=xln(1+x^2)-2(x-arctanx)2,设t=√x,x=t^2,dx=2t
先换元,令√x=u,则x=u²,dx=2udu,u:0→√3∫[0→3]arctan(√x)dx=∫[0→√3]2uarctanudu=∫[0→√3]arctanud(u²)分部积
令√x=t则原式=∫(0→π)sint*2tdt=-2∫(0→π)td(cost)=-2tcost|(0→π)+2∫(0→π)costdt=-2tcost|(0→π)+2sint|(0→π)=2π
∫(0->π)cosxdx=sinx(0->π)=sin(π)-sin(0)=0-0=0
再问:好快~而且是图片所以很清楚~赞再答:有点误再问:只是最後答案算错了吗?再答:是的另有简单方法如下:再问:厉害喔~!!谢谢你~🙏再答:做完后发现此题考察是积分函数的绝对值和奇偶性再
∫[0,π]cos²xdx=∫[0,π](1+cos2x)/2dx=(x/2+sin2x/4)[0,π]=π/2
那就先求积分,后求导数吧d/dx∫(sin²t)dt=d/dx(1/2)∫(1-cos2t)dt=d/dx(1/2)[∫dt-(1/2)∫cos2td(2t)]=d/dx(1/2)[t-(1
如果有用请及时采纳,
令secx=tcosx=1/tx=arccos1/tdx={-1/√[1-(1/t)^2]}(-1/t^2)dt=1/[t√(t^2-1)]dtx=0时t=1x=π/2时t=+
再问:再问:Ϊɶ���õ�һ����ʽ再答:�õľ��Ƿֲ����再问:再问:15����再答:
这题方法有很多,你可以把cos^2x换成1-sin^2x4sin^2xcos^2x=4(sin^2x-sin^4x)sin^2x和sin^4x积分是有公式的.但是一般人估计也记不得,所以方法二:为了方
原式=∫x²d(e^x)=x²e^x-∫e^xd(x²)=x²e^x-2∫xe^xdx=x²e^x-2(x-1)e^x+c
√x=tx=t²dx=2tdt∫(0-->1)2te^tdt=2∫(0-->1)tde^t=2te^t-2∫e^tdt=2te^t-2e^t(0-->1)=2e-2e-(-2)=2
(sinθ)^5dθ=-(sinθ)^4dcosθ=-(1-cos^2θ)^2dcosθ这下好做了吧.
第一个是tan^3xsecxdx(sec^2x-1)tanxsecxdxsec^2x-1dsecx积分结果是sec^3x/3-x+c第二个同样方法cot^4x/cscxdx(cscx^2-1)^2/c
原式=1/2∫dx²/sin²(x²+1)=1/2∫csc²(x²+1)d(x²+1)=-1/2∫[-csc²(x²+1