秩向量什么是线性相关
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 13:11:08
3个3维向量线性相关的充分必要条件是它们构成的行列式等于0因为a1a2a3线性相关且|a1,a2,a3|=7k-7所以k=1.
恩,秩小于或等于向量个数等于,则线性无关小于,则线性相关
线性相关定义:给定向量组A:a1,a2,···,am,如果存在不全为零的数k1,k2,···,km,使 k1a1+k2a2+···+kmam=0则称向量组A是线性相关的,否则称它是线性无关.此时k1
证明:因为(a1+a2,a2+a3,a3+a1)=(a1,a2,a3)KK=101110011而|K|=2≠0,即K可逆.所以r(a1+a2,a2+a3,a3+a1)=r[(a1,a2,a3)K]=r
看向量组构成的矩阵是不是满秩的,满秩说明线性无关,不满秩则线性相关利用初等变换求矩阵的秩.1.(-121)(101)(314)-->(011)秩为2(011/20)秩为3,线性无关(002)(002)
秩等于行向量或列向量个数时,线性无关,小于则相关.
a=kba-b=(k-1)ba-b,b线性相关
没有m×n矩阵满秩的说法,满秩是对方阵而言.m×n矩阵只能说行满秩或列满秩.行满秩则行向量组线性无关,列满秩则列向量组线性无关.行秩和列秩相等,称为矩阵的秩,最大无关组的向量个数等于矩阵的秩.再问:明
行向量线性相关,列向量也线性相关,二者都相关!因为经过初等行、列变换,一定能使某两行,某两列对应成比例!故二者都相关!
令x(1,1,3,1)+y(3,-1,2,4)+z(2,2,7,-1)=(0,0,0,0),有x+3y+2z=0且x-y+2z=0且3x+2y+7z=0且x+4y-z=0,这个方程组有且只有零解,即x
假设给出了a1...ar个向量,向量组A=(a1,a2,...ar),要求判断线性相关性(1)那么根绝定义来判断的话就是看方程k1a1+k2a2...+krar=0的解集的数量.加入只有k1=k2=.
对的.向量组线性相关的充分必要条件是对应的齐次线性方程组有非零解去掉分量,相当于减少方程组中方程的个数即减少了未知量的约束条件这样就更有非零解了以上回答你满意么?再问:能说详细点吗,我想要标准答案。
m是向量的个数,n是向量的维度.比如:5个三维向量.顺便说下这个定理吧:向量组线性无关的充要条件是向量组的秩等于向量组的个数,然而向量组的秩不可能大于向量的维度是吧?所以当向量组的个数大于向量的维度时
可能相关,也可能无关.再问:什么时候相关呢再答:比如,向量都是三维的再问:如果其中一个向量能用另外两个向量表出呢?再答:你的题目是无关,怎么现在转相关了?再答:多想想相关无关的概念吧我要休息了,有问题
1.显式向量组将向量按列向量构造矩阵A对A实施初等行变换,将A化成梯矩阵梯矩阵的非零行数即向量组的秩向量组线性相关向量组的秩2.隐式向量组一般是设向量组的一个线性组合等于0若能推出其组合系数只能全是0
对的.向量组线性相关的充分必要条件是对应的齐次线性方程组有非零解去掉分量,相当于减少方程组中方程的个数即减少了未知量的约束条件这样就更有非零解了
设b4=k1*b1+k2*b2+k3*b3k1,k2,k3属于F=k1(a1+a2)+k2(a2+a3)+k3(a3+a4)=k1a1+k3a4+a2(k1+k2)+a3(k2+k3)=a1+a4则k
可以的一个向量组按行A或按列构成矩阵,矩阵的秩是一样的矩阵的的秩=行向量组的秩=列向量组的秩.所以a1T,a2T,a3T,a4T线性相关当且仅当a1,a2,a3,a4线性相关事实上按定义也可说明这个问
错误举个反例:100101这个3×2的矩阵行向量组线性相关,而列向量组线性无关.
线性表示是指某个向量等于某个向量组的线性组合,那么称这个向量可以由该向量组线性表示.如果一个向量组中任意向量均可由另一个向量组线性表示,那么称该向量组可以由另一个向量组线性表示.而线性相关,只的是向量