l1,L2,L3交于O.角1等于角2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 12:57:43
l1,L2,L3交于O.角1等于角2
已知直线l1//l2,且l3和l1、l2分别交于a、b两点,点p在直线ab上

从上往下依次是你所说的∠1(A为顶点)、∠3(P为顶点)、∠2(B为顶点)吧!(1)∠1+∠2=∠3过P作L4平行于L1,则L1//L2//L4L4分∠APB为∠4,∠5两个角(也就是∠4+∠5=∠3

如图,已知直线L1平行L2,且L3和L1、L2分别交于A、B两点,点P在直线AB上.

(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-

如图 已知直线l1平行l2,且L3和L1、L2分别交于A、B两点,点P在AB上.

答案:∠2=∠1+∠3证明:从P点作L1、L2的平行线L3,交CD于点O则:∠2=∠CPO+∠DPO∵L1∥L2∥L3∴∠1=∠CPO,∠3=∠DPO∴∠2=∠1+∠3(2)如果点P在A,B两点之间运

已知平面α,β,γ两两相交于三条直线l1,l2,l3.且l1与l2相交于点P

α∩β=l1β∩γ=l2γ∩α=l3l1∩l2=P(下面证明p∈l3,思路是:把两线的交点证到第三条线上去)因为l1∩l2=P所以①P∈l1,并且②P∈l2①因为l1=α∩β所以P∈α②因为l2=β∩

如图,已知直线l1 // l2 ,l3、l4是截线,且l3于l1、l2分别交于A、B两点,点P在AB上

(1)∠1+∠2=∠3由P点做l5//l1,因为l1//l2,由平行线的传递性可以知道,如果两条直线都与第三条直线平行,那么这两条直线也互相平行.所以l2//l5设l5把∠3分成∠4和∠5(∠4在l5

如图,直线l1∥l2,AB⊥l1于O,BC交l2于E,若∠1=45°,求∠2的度数.

延长AB角L2与点F∵l1∥l2AB⊥l1∴AB⊥L2∴∠BFE=90°∵∠A=45°∴∠2=90°+45°=135°

如图,已知直线l1‖l2 ,且l3和l1,l2分别交于A,B两点,点P在AB上,l4和l1,l2分

(1)作PE平行l1,l2所以∠1=∠CPE,∠2=∠EPD因为∠3=∠CPE+∠EPD所以∠3=∠1+∠2(2)不发生变化(3)①当P点在A的上方时,作PF平行l1,l2所以∠1=∠FPC,∠FPD

直线l1//l2,直线l1,l3,l4交于一点,∠1=45°,∠2=65°,求∠3和∠4的度数

∵L1//L2   ∴∠1=∠5=45°又∠2=65°∴∠3=180°-∠2-∠5=70°又∠7=∠2    ∴∠4=∠7+∠5=

如图,直线L1//L2,且L3,L4分别于L1,L2交与A,B,C,D四个点.

1,设PCD=∠1,∠PDC=∠2;那么∠ACP+∠1+∠2+∠PDB=180°.又因为∠1+∠2+∠CPD=180°,得∠ACP+∠PDB=∠CPD.2,P在AB两点之间运动,关系不会发生变化.3,

如图所示,三条直线l1、l2、l3相交于点O,∠1=3/2∠2=42°,求∠3的度数.

因为∠1=3/2∠2=42°,所以,∠2=28°,因为l1,12,13是三条直线,所以对角相等,所以2∠3=360°-2×﹙∠1+∠2﹚,即∠3=110°

如图,L1,L2,L3是三条直线,且L1交L2=A,L2交L3=B,L3交L1=C,求证:L1,L2,L3共面

L1交L2于A,L1,L2共面B在L2上C在L1上直线BC(即L3)在平面L1,L2确定平面上.

如图所示,l1、l2、l3交于点O,角1=角2,角3:角1=8:1,求角的度数

因为角一等于角二所以角三比角一比角二等于8:1:1设他们角度为X则8X+X+X=180所以X=188X18=144度1X18=18因为角一等于角二所以角二等于18答:角一角二角三分别为144度18度1

如图1,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在直线AB上,

(1)∠1+∠2=∠3.∵l1∥l2,∴∠1+∠PCD+∠PDC+∠2=180°,在△PCD中,∠3+∠PCD+∠PDC=180°,∴∠1+∠2=∠3.(2)①过A点作AF∥BD,则AF∥BD∥CE,

如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上. (1)试找出∠1、∠2、∠3之间的关系

(1)、∠2=∠1+∠3(方法是过P作直线l∥l1,则l∥l1∥l2,l将∠2分成两个角,其中一个等于∠1,另一个等于∠3)(2)、点P在A、B两点之间运动时,∠1、∠2、∠3之间的关系不会发生变化.

如图,已知直线l1∥l2,且l3和l1、l2分别交于A、B两点,点P在AB上. (1)试找出∠1、∠2、∠

(1)∠1+∠2=∠3;理由:过点P作l1的平行线,∵l1∥l2,∴l1∥l2∥PQ,∴∠1=∠4,∠2=∠5,∵∠4+∠5=∠3,∴∠1+∠2=∠3;(2)同理:∠1+∠2=∠3;(3)同理:∠1-

如图所示,l1、l2、l3,交与点o,∠1=∠2,∠3:∠1=8:1,求∠4的度数

∠1+∠2+∠3=∠1+∠1+8*∠1=180°∠1=18°∠4=∠1+∠2=36°

如图,已知直线l1∥l2,直线l3和直线l1、l2交于点C和D,P为直线l3上一点,A、B分别是直线l1、l2上的不动点

(1)∠2=∠1+∠3.证明:如图1,过点P作PE∥l1,∵l1∥l2,∴PE∥l2,∴∠1=∠APE,∠3=∠BPE.又∵∠2=∠APE+∠BPE,∴∠2=∠1+∠3;(2)①如图2所示,当点P在线