离散数学反对称

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 08:01:54
离散数学反对称
A,B为N阶反对称矩阵,则AB反对称,证明充要条件为AB=-BA

由已知,A^T=-A,B^T=-B所以,AB为反称矩阵(AB)^T=-ABB^TA^T=-AB(-B)(-A)=-ABBA=-ABAB=-BA再问:B^TA^T=-AB,为什么是-AB,而不是BA,不

离散数学关系中,什么样的是反对称的?举个例子说一下

答:反对称,就是存在,一定不存在.其中a不等于b.如果一个关系里任意的,都有则它是对称的.如都没有,就是反对称的.如果存在但不是所有都满足,就是“既不是对称,也不是反对称的”.举例:R={,,,,,}

我想问下关于离散数学的对称与反对称还有自反的问题.

对的,有既对称又反对称的关系.你的结论都是对的.如果这三个关系都是集合X={1,2,3}上的关系,则:R1满足自反、对称、反对称(R1还满足传递)R2满足对称(R2还满足传递)R3满足反对称(R1还满

离散数学关于对称与反对称

从命题逻辑的角度来说,上述定义是个蕴涵式命题:p→q.当p假时,命题恒真.这里,R中没有出现x≠y时的,所以p假,命题真,满足定义.对于对称性的定义,一样判断出R满足定义.综上,如果R中只有的元素,R

离散数学反对称与非对称的区别

非对称关系是对称关系的否定,不满足对称条件的关系都是非对称关系.反对称关系是非对称关系的子集,诸如A={1,2,3},R定义在AxA上,关系R={(1,2),(2,1)}为对称关系,R={(1,1),

离散数学中的反对称关系怎么理解

反对称表现在图上就是任何两点之间不可能有两条方向相反的有向边,即如果xRy∧yRx,那么一定有x=y,你可以一一对比就行了撒

有关于矩阵对称和反对称的证明题 :设A是反对称矩阵,B是对称矩阵.证明:

由已知,A'=-A,B'=B所以有1.(AA)'=A'A'=(-A)(-A)=AA=A^2故.2.(AB-BA)'=(AB)'-(BA)'=B'A'-A'B'=-BA+AB=AB-BA.故.3.AB是

怎么证明反对称矩阵是幂零矩阵?

结论根本就是错的.只有1阶反对称阵肯定是幂零阵.反对称矩阵的特征值都是0或者纯虚数,只要有一个非零特征值及不会是幂零阵.举个2阶的反例01-10高阶的在后面继续补零.

设A是n阶对称矩阵,B是n阶反对称矩阵,则下列矩阵中反对称矩阵为:

选B由题目得:A'=A,B'=-B;因此选项A:(BAB)'=B'A'B'=BAB选项B:(ABA)'=A'B'A'=-ABA剩下的两个你自己分析一下吧,我得去吃饭了,别忘了(AB)'=B'A',顺序

证明反对称矩阵合同于形式为 的矩阵

应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可

偶数阶反对称行列式的正负

所有实反对称矩阵的行列式都是大于等于零的.证明的话,他所有的特征值非零的话一定是纯虚数,结果显然.

离散数学的对称性和反对称的例子

关系R,是建立在两个集合A、B的笛卡尔积上的;而我们总可以将两个不同集合(A、B)上的关系转化为同一个集合X(即两个相等的集合)上的关系——只需取X=A∪B即可.而自反性,就是以这个集合X中的元素为判

设A是对称矩阵,B是反对称矩阵,证明A∧(-1)B∧2-B∧2A∧(-1)是反对称矩阵

A是对称矩阵,则A^{-1}对称,再利用定义可证(A∧(-1)B∧2-B∧2A∧(-1))^T=-(A∧(-1)B∧2-B∧2A∧(-1))

离散数学中自反和反自反,对称和反对称问题!

R1中缺少,所以不是自反的.R1中包含与,所以不是反自反的.也就是说如果关系R中包含但不包含所有的时,既不自反也不反自反.关系R的对称与反对称主要考虑x≠y时,与是否同时出现.若同时出现,则对称;若只

偶数阶反对称行列式取值范围

不是,至少2阶的不是0x-x0行列式等于x^2在实数内的取值范围是0到无穷大再问:所有的都算上的取值可能为负么?再答:任何n阶实反对称行列式的值皆为非负数,留下你的邮箱,我发篇文章给你

A是n维欧氏空间的一个反对称线性变换,为什么这个线性变换在标准正交基下的实反对称矩阵A特征值只能是虚数

结论是错的,因为A的特征值还可以是零,这不是虚数.正确的讲法是实反对称线性变换(或矩阵)的特征值的实部都是零.证明很容易,若A是实反对称矩阵,那么iA是Hermite阵,iA的特征值都是实数.再问:高

关于空集反对称关系矩阵图{0 0 00 0 00 0 0}他有的二元关系有反自反,对称,反对称,传递!它为什么存在反对称

反对称:就是存在,一定不存在,就是说以主对角线对称的元素不能同时为1这矩阵全0,也就是关系都不存在,所以有反对称.

想问一下离散数学的自反和反自反、对称和反对称的判断问题

书上的这些关系性质的定义中,一阶逻辑公式的变项x,y的取值是全总个体域,所以辖域内有x∈A,y∈A的限制.实际上我们只是在集合A中考虑的,所以这些定义完全可以去掉那些x∈A,y∈A的限制.在集合A作为

对称关系,非对称关系,反对称关系

要搞懂答案,首先要知道各种关系的含义.对称关系、非对称关系、反对称关系都涉及到两个不同的关系者项.传递关系、非传递关系、反传递关系涉及到三个不同的关系者项.1、对称关系:同学、邻居、相等、比赛、联营、