矩阵的秩与特征值的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 14:12:21
若两个矩阵的特征值相同,且都可对角化,则相似题目中矩阵不是对角矩阵,但它有n个不同特征值,故可对角化
是的 看看图片吧
若t为A特征值,则倒数1/t为A逆阵的特征值;若a为A的对应特征值t的特征向量,则a也是A逆阵的对应特征值1/t的特征向量.反之亦然.供参考.
很明显一点你说得分块矩阵要是分块对角矩阵接着所有对角上子块得特征值就是原来的特征值特征向量当然没有一点关系因为子块阶数也跟大块不一样呀
没考虑过AA^T的特征值与特征向量,只能推想A与A^T的特征值尽管相同,但由于他们的特征向量不一定相同,所以AA^T的特征值与A和特征值不一定相同.由于|AA^T|=|A|^2,所以若A不可逆,则他们
多少有一点联系,不过不算很紧密.1.方阵A不满秩等价于A有零特征值.2.A的秩不小于A的非零特征值的个数.
你是数学系的吧?我按照一个数学系的标准给你讲下若当标准型是怎么来的,有什么用.最后再讲你的问题.算是给你补补课...若当标准型是和矩阵的相似密不可分的.我们知道一种非常特殊的矩阵是可以进行矩阵的相似对
设X是特征向量,则AX=λX,两边同时再用A作用,得AAX=AλX=λAX=λ²X,而A²=E,故X=λ²X,所以λ²=1.
记d为A的特征值,s为AA^t的特征值,那么必然有:min(s)
A-vE=|3-v1|=v^2-2v-8=(v-4)(v+2)|5-1-v|特征值为:4,-2.对特征值4,(-11;5-5)*(x1,x2)'=(0,0)'对应的特征向量为:(1,1);对特征值-2
A可逆的充分必要条件是A的特征值都不等于0.
求特征值:根据|λE-A|=0,解得λ1=3,λ2=-1;求属于某个特征值的特征向量:根据(λi*E-A)*X=O,将相应的特征值代入求解方程组即可原理最重要,可以参考线性代数相关章节.
伴随矩阵的特征向量与原矩阵相同再答:特征值是照片再答:再答:A是原矩阵再问:嗯,谢谢
不一定当A可对角化时相同,此时A的秩等于它的非零特征值的个数
A与A^-1的特征值互为倒数,且特征向量相同\x0d请看图片中的(2)\x0d
A与B相似所以存在一个矩阵P使得A=PBP^(-1)设α是A的属于λ的一个特征向量所以Aα=λα将A=PBP^(-1)带入PBP^(-1)α=λα得BP^(-1)α=λP^(-1)α所以x是B的属于λ
A^TA的特征值是A的奇异值的平方,与A的特征值没有很直接的联系
不知道你具体要问什么.如果是矩阵特征值是否有0,则与矩阵的秩有关,满秩矩阵没有0特征值;如果是矩阵的行列式,则行列式等于特征值的积;矩阵的迹等于特征值的和.
因为A*A=IAIEIA*AI=IIAIEI=IAI^n,IA*IIAI=IAI^n,故IA*I=IAI^(n-1),若A能对角化,A的特征值为d1,d2,..,dn.则有IAI=d1d2,..,dn
|A|=0说明A有特征值0,于是A的全部三个特征值为0,1,2则A^2的全部三个特征值为0,1,4,则-1不是A^2的特征值,于是|I+A^2|=-|-I-A^2|不等于零,于是A^2+I为可逆矩阵.