矩阵的几何重数 matlab

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 01:19:53
矩阵的几何重数 matlab
几何重数小于代数重数叫什么矩阵

你既然知道叫defectivematrix,那还有什么好问的呢

怎么证特征值的代数重数大于等于几何重数

考虑某个特征值s’的特征子空间V',V'的维数就是s’的几何重数m,再取V'的一组基(由m个线性无关的向量组成),扩充这组基为原n维空间V的一组基,线性变换在这组新基下的表示矩阵可以写成块上三角阵的形

几何重数 代数重数 是什么?什么情况下两者相等

代数重数是特征根的重根数,几何重数是特征根的特征子空间的为数.两者相等的充要条件是矩阵可对角化.

什么是重数(代数重数与几何重数)?复数的概念?为什么虚数数轴和实数数轴上都有0 ?

代数重数指的是方程的根的重数集合重数指的是几何图形在该点的重数比如,(x-1)^10=0,这个方程的根为x=1,这个根是10重的,因此x=1的代数重数为10比如,一条直线与一个圆相切,那么切点的几何重

几何重数和代数重数有什么区别?

特征值?代数重数指特征值是几重根几何重数指该特征值所对应特征向量所构成空间的维数恒有几何重数

请问什么情况下代数重数等于几何重数,什么情况下大于几何重数?

如果代数重数是1,那么几何重数跟代数重数一定是相等的;如果代数重数大于1,那么代数重数可能等于几何重数,也有可能大于几何重数.这个尝试着求属于特征值的特征向量才能知道;对于代数重数是k>1的特征值,如

什么情况下几何重数小于代数重数,什么时候相等?

特征值对应的Jordan块全为一阶的时候几何重数与代数重数相等.Jordan块大于等于二阶时几何重数小于代数重数.Jordan块的形式是上双三角阵,主对角元都是相同的特征值,次对角元都是1.任何方阵都

能举一个特征值的代数重数大于几何重数的例子吗?

A=1101特征根1,代数重数2.特征向量空间维数1.(只有(0,a)^T为特征向量)再问:那么实对称矩阵的特征值必有几何重数等于代数重数吗?为什么?再答:是。因为实对称矩阵可以对角化。再问:我其实就

为什么几何重数小于代数重数

代数重数指的是方程的根的重数几何重数指的是几何图形在该点的重数比如(x-1)^10=0,这个方程的根为x=1,这个根是10重的,因此x=1的代数重数为10再如一条直线与一个圆相切,那么切点的几何重数就

各项都为3的三阶矩阵的特征值的几何重数和代数重数是怎么算的?对几何重数和代数重数不了解望详解.

代数重数即特征值的重数几何重数就是属于特征值的线性无关的特征向量的最大个数|A-λE|=(9-λ)λ^2先提交,然后继续哈再答:(A-9E)x=0的基础解系为(1,1,1)^T所以特征值9的代数重数为

线性代数证明:特征值的几何重数严格大于0

这个要看你怎么定义特征值了,对于矩阵(或者说有限维空间上的线性变换)而言一般来讲是用det(A-λI)=0的代数型定义或Ax=λx的算子型定义,只需要对一种定义方式证明.dimKer(A-λI)>0A

矩阵jordan块与相应算子的特征值的代数重数和几何重数的关系,要怎样来解释,

代数重数指特征值是几重根几何重数指该特征值所对应特征向量所构成空间的维数恒有几何重数

刘老师您好,我想请教个问题,一个复对称矩阵,其代数重数是否等于几何重数?谢谢!

只有一阶矩阵才成立,n>1时复对称矩阵的特征值可以出现任何程度的亏损,因为任何复方阵都相似于复对称矩阵.

若矩阵可以对角化,那么他的代数重数等于几何重数(对么?),那什么情况下二者不等,不等又代表什么意义?

对着呢再答:再问:手写辛苦了再答:嗯嗯再问:dim是什么?再答:维度再答:dimension再问:噢,第一次见这么写

如何证明矩阵特征值的几何重数等于相应Jordan块的个数,谢谢!

这个比较简单,证明过程如下:1.A相似于某个Jordan标准型J,且J=diag{J1,J2,...,Jp},Ji表示第i个特征值λi对应的Jordan块;2.不难发现,J对应于任何λi的几何重数等于

关于矩阵合同对角化矩阵相似对角化的充要条件是代数重数等于几何重数,那么矩阵合同对角化也满足这个定理吗

任何一个对称矩阵都可合同对角化两回事再问:我说的不仅仅是对称阵。是不是没有什么充要条件?

老师您好,关于特征值,几何重数小于等于代数重数,那如何确定几何重数是多少?

几何重数即特征值对应的齐次线性方程组的基础解系所含向量的个数即n-r(A-λE)

线性代数中,如果三阶方阵有三个线性无关的特征向量,几何重数等于代数重数吗?为什么?

等于.因为代数重数之和等于A的阶,即3而A有3个线性无关的特征向量所以几何重数等于代数重数

几何重数的意义是什么?怎么证明几何重数小于等于代数重数?

几何重数就是特征子空间的维数,由此即可证明它不超过代数重数你先找本教材看看,不要看百度上的内容再问:教材上没有证明过程。。。求解!再答:如果λ是A的特征值,几何重数是m,x_1,x_2,...,x_m

为什么实对称矩阵的几何重数必等于代数重数

因为它可以对角化再答:而且对角化等价于几何重数等于代数重数再问:为什么可以对角化再答:这是一个基本定理,可以看二次型那里。用归纳法证明的