矩阵的n次方等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 13:37:13
计算一下A^2=6A所以A^n=6^n-1A
由性质(AB)*=B*A*得(AA...A)*=A*A*...A*(k个)所以有(A^k)*=(A*)^k.
由于(E-A)(E+A+A²+...A的k-1次方)=(E+A+A²+...A的k-1次方)-(A+A²+...A的k次方)(注意抵消规律)=E-A的k次方=E-0=E所
A*这个记号不是很规范的记号,我用adj(A)来写首先考虑A可逆的情况Aadj(A)=det(A)I两边取行列式得det(A)det(adj(A))=det(A)^n所以det(adj(A))=det
凡是一个矩阵可表示成一个列矩阵乘该列矩阵的转置形式(A=ααT),则该矩阵A的n次方必与A差一常数倍K,其中K=tn-1,t=αTα.
特征值是0.设A的特征值为b,对应的特征向量为x,则A^nx=b^nx,因为A^n=0,所以b^nx=0.因为x≠0,所以b^n=0,b=0.
3的n次方乘以2的n-1次方.
直接打格式不好编辑,我手写了答案,你看图片吧.再插一句:给矩阵乘一个系数相当于给每个元素都乘以这个系数,而给行列式乘一个系数则是给一行或是一列乘以这个系数.
A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法
是的,因为|A*B|=|A||B|,所以|A^n|=|A*A^(n-1)|=|A||A^(n-1)|=...=|A|^n
只要证明(B的逆矩阵)的2次方乘B的二次方=E(单位阵)即可这是显然的:(B的逆矩阵)的2次方乘B的二次方=(B的逆矩阵×B的逆矩阵)×(B×B)=B的逆矩阵×(B的逆矩阵×B)×B=B的逆矩阵×E(
A可对角化的充要条件是A的极小多项式没有重根这里A的极小多项式一定是x^n-1的因子,显然无重根
令A=k01k求出特征值,与特征矩阵.化成A=PVP分项相乘得出解答.(键盘计算不好写)
等于,以n=3为例证明如下:利用(AB)T=BT*AT(AT)^3=AT*AT*AT=(A*A*A)T=(A^3)T
不对A=0100A^2=0
按下图可以严格证明这个性质.请采纳,谢谢!
这是没有公式的,如果要求N次方,那么给出的矩阵一定是很特殊的,它的N次方是有规律可循的,有点像数列.