矩阵特征值基础解系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:21:25
系数矩阵的行最简形为11/21000000每一行对应一个方程因为只有一个非零行,所以只有一个有效方程x1=(-1/2)x2-x3自由未知量x2,x3分别取(2,0),(0,1),代入解出x1,得基础解
x1x2...xn为基础解系的基础解则a1x1+a2x2+...anxn为其次方程的通解a1a2...an属于R
显然(A),(B),(C)正确,(D)错误,你哪个选项不理解
A=1/21/41/41/41/21/41/41/41/2解方程|A-xE|=0,化简得到(x-1)(x-1/4)(x-1/4)=0所以特征值是1,1/4,1/4x=1对应的特征向量:A-1E=-1/
设此矩阵A的特征值为λ则|A-λE|=-λ100-λ1-1-3-3-λ第1行减去第3行乘以λ=01+3λλ²+3λ0-λ1-1-3-3-λ按第1列展开=1+3λ+λ(λ²+3λ)=
若x是A的属于特征值a的特征向量则x是(A-aE)X=0的非零解若a=0原矩阵的基础解系是属于特征值a的特征向量你是不是遇到什么具体问题了把原题拿来,我帮你看看再问:我是遇到了一句话,想的不是很明白,
选第3个,特征值为-1,0,1说明行列式为零,不可逆.且与特征值为对角矩阵相似且等价有相同的秩为2,所以齐次方程只有一个基础解系.不同的特征值对应的特征向量线性无关实对称矩阵的不同的特征值对应的特征向
eig(a)一句命令搞定再问:你算算呗,就是用的这个算出来好像错的。再答:错的、??你怎么知道???再问:因为特征向量都为负的,你算算看得多少再答:手算???再问:因为特征向量都为负的,你算算看得多少
不好意思,这两天有事没上网. 齐次线性方程组的基础解系不是唯一的,两个基础解系都对只要满足:是Ax=0的解线性无关个数为n-r(A)则都是基础解系
-111-1就是-X1+X2+X3-X4=0分别令:X2=1,X3=0,X4=0,解得X1=1令:X2=0,X3=1,X4=0,解得X1=1令:X2=0,X3=0,X4=-1,解得X1=1(1,1,0
矩阵的特征值等于逆矩阵特征值的倒数,反过来也一样,记住这个定理哦
|A-λE|=(2-λ)^2×(4-λ)λ=2,2,4λ=2,解(A-2E)X=0得基础解系,p1=(1,0,0)^Tp2=(0,-1,1)λ=2对应的特征向量p=k1p1+k2p2(k1,k2不同时
再问:谢谢。但是怎么确定α1、α2分别取1和0的呢?再答:这种题有一个固定的套路,当你求出x1.x2.x3的函数关系时,一般就是分别取(1,0,x3)和(0,1,x3)再问:再问:谢谢。那这个题的基础
|A-λE|=17-λ-2-2-214-λ-4-2-414-λr3-r217-λ-2-2-214-λ-40λ-1818-λc2+c317-λ-4-2-210-λ-40018-λr2-2r117-λ-4
基础解系:是对于方程组而言的,方程组才有所谓的基础解系,就是方程所有解的“基”解向量:是对于方程组而言的,就是“方程组的解”,是一个意思.特征值向量:对于矩阵而言的,特征向量有对应的特征值,如果Ax=
把矩阵求阶梯型第二行加到第一行第三行加到第四行第二行的-1倍加到第三行变成0000三行为0有3个自由未知量所以ζ1=(2,1,1,0)1-1-11ζ2=(0,1,0,1)0000ζ3=(0,0,1,1
特征向量是相应齐次线性方程组的非零解如果这不清楚的话,建议你系统地看看教材,注意以下结论:1.λ0是A的特征值|A-λ0|=02.α是A的属于特征值λ0的特征向量α是齐次线性方程组(A-λ0E)X=0
设矩阵A的特征值为λ则A-λE=2-λ-125-3-λ3-10-2-λ令其行列式等于0,即2-λ-125-3-λ3-10-2-λ第3列加上第1列乘以-2-λ=2-λ-1λ^2-25-3-λ-5λ-7-
A是一个n阶方阵,r(A)=n-1所以AX=0的基础解系的解向量的个数为1又A的每一行元素加起来均为1则A(1,1,...,1)^T=(1,1,...,1)^T所以x=(1,1,...,1)^T是AX
(1)求矩阵A的秩r(A)A的列向量成比例,有a1≠0∴r(A)=1⑵设b′a=k﹙常数﹚有A²=kAA^10=k^9A⑶齐次线性方程组AX=0的通解为向量﹛b1,b2,……,bn﹜在R^n