矩阵合同的自反性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 18:09:10
等价一般是指可以通过初等变换变成另一个,本质上只需要两个矩阵秩相同就可以了.是个很宽泛的条件,应用不大.A相似于B,是存在非异矩阵P,使得PAP^-1=B,这个是线性代数或者高等代数里面最重要的关系,
不是,是正定,正定合同与E.再问:能证明一下上述的题目吗?
设关系为F(a,b)自反性=对任意元素a证F(a,a)成立反自反性=对任意元素a证F(a,a)不成立对称性=对任意两个元素,若F(a,b)证F(b,a)成立反对称性=对任意两个元素,若F(a,b)证F
纠正一下,正确的说法应该是矩阵之间的相似关系具有自反性.证明:单位矩阵是可逆矩阵,对于任意的方阵A,用E表示单位矩阵,A=E逆*A*E.所以A和自身相似,自反性成立.
你可以先看一下这里关于矩阵合同的定义,首先两个矩阵如果合同的话,一定都是实对称的矩阵,而选项C和D的矩阵都不是实对称的然后两个合同的矩阵一定具有相同的特征值,因此主对角线元素之和是相等的,矩阵A主对角
等价的充要条件是两个同阶矩阵的秩相等目前大学阶段两矩阵相似的充要条件没有给出,相似,合同都能推出秩相等故等价
应该说这个标准型看上去不是很舒服,最好先把它转化到M=diag{D,D,...,D,0,0,...,0}其中D=01-10这步合同变换很容易,按1,n,2,n-1,3,n-2,...的次序重排行列即可
"取C=diag(√a1,√a2,...,√an)"这里有误应该是取C=diag(1/√a1,1/√a2,...,1/√an)
A=EA(E^-1)或A=(E^-1)AE其中E是单位阵,E^-1=E所以A与自身相似
两个矩阵合同,只能保证正负惯性指数相等,也就是正负特征值个数相等,但并不能保证特征值相同.
A与A自己等价
有非常多其中一个就是它本身定义:若B=C'AC,C可逆,则可以说明A,B矩阵是合同矩阵,C'比表示C转置
设矩阵A与矩阵B合同,矩阵B与矩阵C合同,字母T表示矩阵的转置即存在可逆矩阵P,Q,使得A=PT*B*P,B=QT*C*Q所以A=PT*B*P=PT*(QT*C*Q)*P=PT*QT*C*Q*P=(Q
这要看具体情况再问:如题:矩阵A=diag(1,-1,1)合同于矩阵()AH=diag(2,-2,0);BH=diag(-2,3,4);CH=diag(2,-3,-2);求具体解过程啊.再答:选择B.
合同矩阵给定两个n×n矩阵A和B,如果存在可逆矩阵C,使得B=C^T×A×C,C^T是矩阵C的转置.称矩阵A和B合同.
利用特征值与秩经济数学团队帮你解答.
区别:就是没什么一样的.联系:对正交矩阵而言,合同与相似等价.
合同,相似=>等价,反之不成立合同未必相似,相似也未必合同实对称矩阵相似(或特征值相同)必合同
1.A,B相似,则特征值相同--这是定理,相似矩阵的特征多项式相同A,B合同:概念来源自二次型,一般是实对称矩阵2.A,B合同,则正负惯性指数相同,秩相同--定理A,B不相似,由于A,B为实对称矩阵,