矩阵合同的等价性
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 23:54:49
等价一般是指可以通过初等变换变成另一个,本质上只需要两个矩阵秩相同就可以了.是个很宽泛的条件,应用不大.A相似于B,是存在非异矩阵P,使得PAP^-1=B,这个是线性代数或者高等代数里面最重要的关系,
不一样."等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支.矩阵的等价指的是可以通过初等变换互换.至于为什么这样称呼,已经不知道原因了.可以给你一种便于理解的解释:
矩阵A与矩阵B等价是A与B合同的必要条件,但不是充分的.因为矩阵A与矩阵B等价是存在可逆矩阵P,Q.使得PAQ=B,而A与B合同是存在可逆矩阵C,使得C'AC=B,可见合同是特殊的等价.
存在满秩矩阵PQ,使得:B=PAQ成立,则称矩阵A、B等价;存在可逆矩阵P,使得:B=P-1AP成立,则称矩阵A、B相似;存在可逆矩阵P,使得:B=P’AP成立,则称矩阵A、B合同.再问:可以这么说不
这些符号不大统一前两个对的合同有时用≈表示一般正规考试,都不用这类符号,而是直接用汉字表述
既然r(B)=n,那么n0.
你记错性质了,B表示A与B相似,相似矩阵有相同的特征值.经济数学团队帮你解答,请及时评价.再问:老师,你的|λI-B|等式的第二步P^-1(λI-A)P与上一步怎么觉得不相等啊。。再问:再答:再问:懂
如果矩阵B可以由A经过一系列初等变换得到那么矩阵A与B是等价的经过多次变换以后,得到一种最简单的矩阵,就是这个矩阵的左上角是一个单位矩阵,其余元素都是0,那么这个矩阵就是原来矩阵的等价标准型.
你可以先看一下这里关于矩阵合同的定义,首先两个矩阵如果合同的话,一定都是实对称的矩阵,而选项C和D的矩阵都不是实对称的然后两个合同的矩阵一定具有相同的特征值,因此主对角线元素之和是相等的,矩阵A主对角
等价的充要条件是两个同阶矩阵的秩相等目前大学阶段两矩阵相似的充要条件没有给出,相似,合同都能推出秩相等故等价
矩阵的相似:设A,B为n阶矩阵,如果有n阶可逆矩阵P存在,使得P^(-1)*A*P=B成立,则称矩阵A与B相似,记为A~B.矩阵合同:两个矩阵和是合同的,当且仅当存在一个可逆矩阵,使得A=P^T*B*
1.等价矩阵就是你理解的那样.2.相似矩阵的定义是:存在可逆矩阵P,使得P(-1)AP=B,则称B是A的相似矩阵.原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|所以
1.矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件;2.矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件;3.矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,
等价指的是两个矩阵的秩一样合同指的是两个矩阵的正定性一样,也就是说,两个矩阵对应的特征值符号一样相似是指两个矩阵特征值一样.相似必合同,合同必等价.
设矩阵A与矩阵B合同,矩阵B与矩阵C合同,字母T表示矩阵的转置即存在可逆矩阵P,Q,使得A=PT*B*P,B=QT*C*Q所以A=PT*B*P=PT*(QT*C*Q)*P=PT*QT*C*Q*P=(Q
肯定可逆.首先告诉你一个结论就是等价矩阵的秩是相同的.A可逆则A的秩是N,则B的秩也是N即B的行列式不等于0,所以A可逆.等价矩阵的概念其实是一个矩阵A可以经过有限次的初等变化,转化为B,则称A与B等
利用特征值与秩经济数学团队帮你解答.
这些符号各教材不太统一考研题目中不用这些符号,而直接说合同或等价
简而言之,标准型当然要越简单越好(在存在性有保障的前提下还得有唯一性),但这都需要运气,你所学到的都是些非常简洁的结论,复杂的你根本没见过.相似变换运气不算最好,正好存在一批不可对角化的矩阵,所以需要
合同,相似=>等价,反之不成立合同未必相似,相似也未必合同实对称矩阵相似(或特征值相同)必合同