矩阵乘积的秩小于等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 12:04:40
考察相抵变换A00B=>A0AB=>AAAA+B右下角子阵的秩当然不超过整个矩阵的秩,从而r(A+B)
因为A+B的列向量组可由A的列向量组的一个极大无关组与B的列向量组的一个极大无关组合并的向量组线性表示
设A为n*n矩阵,rank(A)=1记A=(a1,…,an),ak,k=1,…,n为n维列向量不妨设a1不是零向量,那么由rank(A)=1可得ak=bk*a1,bk为数于是A=(a1,b2*a1,…
当A,B不可逆时,用到多项式理论你看看吧:再问:当x充分大时,A(x)、B(x)都可逆怎么证明?再答:x充分大,则A(x)的主对角线上元素充分大,考虑行列式的定义即知A(x)可逆再问:为什么?不懂啊再
题目完整么?有没有对矩阵ABC的说明再问:我已经知道答案了,谢谢了。
因为单位举证的是对角线是1,其他是0的矩阵按矩阵乘法乘出来就还是原来的矩阵再问:但是A矩阵本来不是0的乘以0就变成0了啊,就不等于A了啊?再答:不是的 一个矩阵说穿了就是一个二维数组。一个n
用矩阵阶数n数学归纳法.当n=1,2时结论成立.设对n-1阶正定阵结论成立,则对n阶正定阵分块为[A(n-1)a;a^Tann],左上角是n-1阶正定阵,则左乘矩阵【E(n-1)0;-a^TA(n-1
不一定相等,因为矩阵相乘没有交换律.见图再答:
因为矩阵可以化成对角元素都是其特征值的对角矩阵,而行列式的值不变,对角矩阵的行列式就是对角元素相乘
硬背当然不好想了.可以这样从意义上来形象地理首先秩可以理解为线性无关的列向量的组数.那么矩阵A、B的秩分别a、b,那么就是分别有a、b个线性无关的列向量了.而线性相关的就是由向量加减后是否平行决定的.
因为若所有的方阵可以通过相似变换得到若当标准型,例如a11a1a2a31a31a3没标的都为0显然这个矩阵的行列式为所有对角线元素,即特征值的乘积而相似变换不改变行列式,所以矩阵所有特征值的乘积等于矩
|A|E的秩是n|A|E的秩肯定不超过A的秩!当|A|≠0时,|A|E的秩是n,此时A可逆,所以R(|A|E)=R(A).当|A|=0时,|A|E=0,秩是0,R(|A|E)≤R(A).
貌似你问了两边.这两句话,都依赖于,矩阵有n个特征值(重根按重数计算)相似,迹相同,行列式相同,这个不依赖于矩阵有n个特征值,也不依赖于他们可对角化.
你先把行列式的基本性质复习复习,都掌握之后就能看懂了最关键的性质就是把行列式某一行的若干倍加到另一行上整个行列式的值不变
这两个矩阵像是软件导出的矩阵我用MATLAB按楼主给出的数值输入后,计算结果是[0,0,0,0.1551,0.2387]再问:亲,那这个呢?第一个是转置矩阵,上面少写T,谢谢了再答:算得结果是[00.
楼主,你看看吧,我也不知道对错.(ab)*=|ab|(ab)^-1=|ab|((b^-1)(a^-1))=|a||b|((b^-1)(a^-1))a*b*=|a|(a^-1)|b|(b^-1)由于ab
我的论文正好涉及到,你看看:
0,绝对值小于15的整数里面有0,0乘以任何数最终都得0