矩阵乘以0矩阵等于
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 22:17:24
零矩阵乘以任何矩阵等于0(矩阵)
不一定.A,B不是方阵时可以不相等.再问:如果是方阵是相等?再答:A,B是方阵时|AB|=|A||B|=|B||A|=|BA|
特征值、特征向量吧.B是A的特征向量.
数学公式这里不好写,所以就用图片了.
A是实矩阵就可以实矩阵是指A中元素都是实数不一定是对称矩阵.此时r(A^TA)=r(A)证明方法是用齐次线性方程组AX=0与A^TAX=0同解.A不一定是方阵,不一定可逆再问:如果换作A的伴随乘以A,
A^-1B与B^-1A一般不相等矩阵的乘法不满足交换律
解题思路:若向量a经过矩阵A变换后所得的向量为b(写成列向量),则b=Aa;本题中的A是单位矩阵,它对应的变换为“恒等变换”(即变换A将任一向量变换为自身).解题过程:解答见附件。最终答案:(2,3)
还记得行列式的代数余子式的概念和性质吧.行列式A的元aij的代数余子式Aij行列式A的第i行(或列)与它对应的代数余子式的积=|A|行列式A的第i行(或列)与其它行(或列)对应的代数余子式的积=0矩阵
是的.前提是乘法有意义
若B为n阶Hermite正定矩阵,则存在n阶矩阵A且A为下三角矩阵,使得B等于A乘以A的共轭转置.放在实数域内就是A乘以A的转置矩阵了,其实这就是所谓矩阵的Cholesky分解.
一个实数k乘以矩阵A=[a11a12;a21a22]等于矩阵B,B=[k*a11k*a12;k*a21k*a22].所以你说的是正确的.
这是正交矩阵的定义.该矩阵每列元素做成向量,都是单位向量,且列向量组之间是正交的,因此列向量组是一个正交单位向理组.同样的,行向量组也是正交单位向量组.矩阵的行列式只能是1或-1.其逆矩阵就是它的转置
不等于,AXB矩阵相乘满足A的行数与B的列数相等,反过来不一定成立,即BXA可能根本无法做乘法
是的,因为AE=AEA=A所以AE=EA可以的话,望选为满意答案.
取单位向量x使得||Ax||_2=||A||_2,那么||A||_2^2||x||_1=||A^HAx||_1
是的n阶单位阵不管左乘还是右乘一个n阶矩阵,都等于该矩阵
如果你想表达的是A(Bx)=(AB)x,那么以后注意练习表达能力,并且去把矩阵乘法的结合律回炉重学一遍