矩阵r(a)=n有解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 15:47:39
矩阵r(a)=n有解
当A是n阶矩阵,r(A)=n-1,证明r(A*)=1

问题可以这样看,设n阶阵A=(a_ij)的秩是n-1,A*=(A_ji)是伴随矩阵,其中A_ij是i行j列的代数余子式,下面要证明AA*=0.利用Laplace展开来看这里说明AA*的对角元全部等于0

证明 如果一个s*n矩阵A的秩为r,则有s*r的列满秩矩阵B和r*n行满秩矩阵C使得A=BC

矩阵的满秩分解,我以前回答过同样的问题.见链接.貌似有一处笔误:应该是“现在将T分解,T=U*V”而不是“现在将T分解,B=U*V”

A为m*n矩阵 B为n*s矩阵 证明r(A)=

这是什么结论?A,B不同型,不能相加再问:那请问r(A)

已知矩阵n*n矩阵B=A*A',A为n*r矩阵,求解A矩阵,matlab如何实现

小问题1似乎是特征分解.[V,D]=eig(K);这样就可以得矩阵V和对角阵D,满足K*V=V*D再问:恩。。这样特征值对角阵的确可以求出来,变化向量P怎么求了呢再答:P不就是V么。。。。V是单位正交

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

关于伴随矩阵的秩,有结论:若 r(A)=n-1,则 r(A*)=1怎么证明?

再问:不好意思有两个地方不明白A至少有一个n-1阶子式不为0之后为什么r(A*)就大于等于1了???还有为什么|A|=0???再答:因为A*中每个元素都是A的n-1阶子式。r(A)=nA可逆|A|≠0

设n阶矩阵a可逆,则对任意的n*m矩阵B,有R(AB)=R(B) 这个对不

对的对的定理:两个矩阵乘积的不大于每一因子的秩,特别当有一个因子是可逆矩阵时,乘积的秩=另一个因子的秩.

设A为n阶矩阵,证明r(A^n)=r(A^(n+1))

如果知道Jordan标准型的话就显然了.如果不知道的话就证明A^{n+1}x=0和A^nx=0同如果A非奇异则显然成立,否则利用n-1>=rank(A)>=rank(A^2)>=...>=rank(A

A 是mxn 矩阵,则存在矩阵B,使得AB = 0 且有r(A) +r(B)=n

设r(A)=a,则可分解A=Pdiag(T,O1)Q,其中T为aXa的对角阵P,Q分别为m阶和n阶可逆方阵,O1为(m-a)X(n-a)的零矩阵令B=Q^(-1)diag(O2,S),其中O2为aX(

线代 已知r(A)=r,A是n阶矩阵,证明AX=b有n—r+1个线性无关解.

结论:设a是AX=B的解,b1,...,bn-r是AX=0的基础解系则a,a+b1,...a+bn-r是AX=B的n-r+1个线性无关的解再问:这是公理吗,不是公理求证。再答:设其线性组合等于零左乘A

设n阶矩阵,r(A)=n-1,证明:r(A*)=1 (A*)表示A的伴随矩阵.

知识点:若AB=0,则r(A)+r(B)再问:因为r(A)=n-1,所以|A|=0这个怎么理解?再答:你教材中矩阵的秩怎么定义的?1.矩阵的秩等于行秩等于列秩2.A中最高阶非零子式的阶

设A为m×n矩阵,证明AX=Em有解的充要条件是R(A)=m

证明:必要性:因为AX=Em有解所以Em的列向量组可由A的列向量组线性表示所以m=r(Em)=Em的列秩=m而A只有m行,所以r(A)再问:确定对吗?再答:呵呵保证

证明对于n阶矩阵A,若R(A)=n,则R(A2)=n

(A)=n,说明矩阵A时可逆矩阵,因此A可以写成一系列初等矩阵的乘积,设A=p1*p2ps,相当于对矩阵A做了一系列的初等列变换,而初等列变换不改变矩阵的秩,因此r(A*A)=r(A)其实还可以简单点

设A为r*r阶矩阵,B为r*n阶矩阵且R(B)=r,证明:

1)由AB=0,得R(A)+R(B)《r.又R(B)=r,故R(A)《0.显然R(A)》0.故R(A)=0既A=02)如果AB=B,则AB-B=0.即(A-E)B=0,R(B)+R(A-E)《r.又R

设A为M*N矩阵,且非齐次线性方程组AX=b有唯一解,为什么则r(A)=n

若m>n则r(A)≤min(m,n)≤n若m=n则r(A)=n=m若mn则r(A)≤min(m,n)≤n?是n>min(m,n)固然