矩阵k次方等于0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 04:44:59
矩阵k次方等于0
若A的k次幂等于0,k为某个正整数,则称A是幂零矩阵,证明幂零矩阵的特征值必为0

A的特征值为a,特征向量为x,即Ax=ax,A^2x=A(ax)=a^2x,.,A^kx=a^kx=0,故a^k=0,a=0

k次伴随矩阵等于伴随矩阵的k次方

由性质(AB)*=B*A*得(AA...A)*=A*A*...A*(k个)所以有(A^k)*=(A*)^k.

设A是n阶矩阵,满足A的k次方等于0(k是正整数).求证:E-A可逆,并且(E-A)的-1次方等于E+A+A的2次方+…

由于(E-A)(E+A+A²+...A的k-1次方)=(E+A+A²+...A的k-1次方)-(A+A²+...A的k次方)(注意抵消规律)=E-A的k次方=E-0=E所

矩阵转置的n次方等于矩阵

凡是一个矩阵可表示成一个列矩阵乘该列矩阵的转置形式(A=ααT),则该矩阵A的n次方必与A差一常数倍K,其中K=tn-1,t=αTα.

矩阵A的n次方等于0,A的特征值是否为0?

特征值是0.设A的特征值为b,对应的特征向量为x,则A^nx=b^nx,因为A^n=0,所以b^nx=0.因为x≠0,所以b^n=0,b=0.

证明:如果A的K次方等于0,则E-A的逆矩阵等于E+A+A的2次方一直加到A的K-1次方?

即证:(E-A)(E+A+A^2...+A^(k-1))=E左式展开=E*(E+A+A^2...+A^(k-1))-A*(E+A+A^2...+A^(k-1))=E-A^k当A^k=0时,左式=E

已知对给定的方阵A,存在正整数k使A的k次方等于0,试证E-A可逆,并求出E-A的逆矩阵.

因为A^k=0所以(E-A)(E+A+A^2+...+A^(k-1))=E+A+A^2+...+A^(k-1)-A-A^2-...-A^(k-1)-A^k=E-A^k=E所以E-A可逆,且(E-A)^

设A为n阶矩阵A的m次方等于0矩阵,证明E-A可逆

A^m=0A^m-E^m=-E^m针对左边利用展开式(A-E)[A^(m-1)+A^(m-2)E+……+E]=-E矩阵可逆的定义就是看这个矩阵和另外一个的乘积是否为单位阵这个只能这种方法

矩阵ABC乘积的K次方等于什么

题目完整么?有没有对矩阵ABC的说明再问:我已经知道答案了,谢谢了。

若A的k次方为零矩阵(k为正整数),求证I-A的逆矩阵等于I+A+A的平方+...+A的k-1次方

(1-A)[1+A+A^2+A^3+...+A^(k-1)]=1+A+A^2+A^3+...+A^(k-1)-(A+A^2+A^3+...+A^k)=II-A的逆矩阵等于I+A+A的平方+...+A的

设矩阵A的K次方等于0矩阵,如何证明E-A可逆,并求E-A的逆

(E--A)(E+A+A^2+A^3+...+A^(n--1))=E+A+A^2+A^3+...+A^(n--1)--A--A^2--A^3--.--A^n=E--A^n=E,因此E-A可逆,且(E-

A矩阵的K次方的逆等于A的逆矩阵的K次方嘛

等于.由性质(AB)^-1=B^-1A^-1知(A^4)^-1=A^-1A^-1A^-1A^-1=(A^-1)^4再问:请问老师我这个计算过程对吗?照此计算,A的逆是不是相当于把B的逆的第二行的-1倍

线性代数题 若A的k次方=0(k为正整数) 证明:E-A的逆矩阵等于E+A+A的平方+.+A的K-1次方

考虑(E-A)(E+A+A^2+A^3+...+A^(K-1))=E+A+A^2+A^(k-1)-A-A^2-A^3-...-A^k=E-A^k=E(因为已知A^k=0)所以E-A的可逆矩阵为E+A+

设A是n阶矩阵,若存在正整数k,使A的k次方为o矩阵,求证矩阵A的特征值为0

设a是A的特征值则a^k是A^k的特征值(定理)而A^k=0,零矩阵的特征值只能是0所以a^k=0所以a=0即A的特征值只能是0.

如果A的K次方等于0,则E+A的逆矩阵等于?

因为(E+A)[E-A+A^2-A^3+.+(-1)^(k-1)A^(k-1)]=E-A+A^2-A^3+.+(-1)^(k-1)A^(k-1)+A-A^2+A^3+.+(-1)^(k-1)A^k=E

矩阵A的k次方等于0,则A的秩为多少

这个不一定.根据你给的条件只能说明A的若当型中都是形如的若当块,并且最大的若当块是k阶的,也就是说A的秩最小是k-1多少不一定.

设A为n阶矩阵 存在正整数k 使得A的k次方等于O 证明:A不可逆

根据|AB|=|A||B|得到|A^k|=|A|^k=0所以|A|=0,所以不可逆

求此矩阵的k次方表达式

你必须明确一下,不能只知道可对角化矩阵如何处理,对于亏损的矩阵也要会处理把你的矩阵记为A,那么A=PJP^{-1},其中P=[131;-1-20;-1-10],J=[110;011;001]Jorda

一个矩阵是k次方等于单位矩阵,求矩阵旋转的角度,

若旋转矩阵记为A=|cosa,-sina||sina,cosa|可以证明A^k=|cos(ka),-sin(ka)||sin(ka),cos(ka)|∴cos(ka)=1,sin(ka)=0ka=2n

对于非零矩阵A,A的k次方等于零矩阵,则0为A的k重特征值还是n重特征值!

如果n是矩阵A的阶数,那么0是A的n重特征值,k和重数没有什么关系再问:n为A的阶数,为啥呢,我觉得只有k重是零根,剩下的不一定是零根呢再答:如果A满足多项式f(A)=0,那么A的任何特征值λ都满足f