矩阵A与矩阵B可交换是什么意思

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:51:29
矩阵A与矩阵B可交换是什么意思
证明:存在一个矩阵P,使得可交换矩阵A,B同时对角化.

这里是可同时上三角化,至于对角化则不一定.证明也很简单,利用可交换矩阵有共同特征向量,并将这个特征向量扩充为一组基.考虑A,B在这组基下的矩阵.然后利用数学归纳法即可.注:当然事实上这里要求A,B可交

什么是可交换矩阵

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A.可交换矩阵的一些性质性质1设A,B可交换,则有:(1)A·B=B·A,(AB)=AB,其中m,k都是正整数;(2)Af(B)=f(

如果AB=BA,矩阵B就称为与A可交换.设A= 求所有与A可交换的矩阵

首先,你要知道,两个矩阵可交换,说明它们都是方阵.所以先设要求的矩阵为和A同阶的形式.然后,根据AB=BA,用矩阵的乘法表示出来最后,左右两边对应位置的元素相等,就解出来了不知我说清楚没有

如何证'若矩阵A,B可交换,则A,B必为同阶矩阵

AB的行数即A的行数,AB的列数即B的列数所以AB=BA时,A的行数(AB的行数)等于B的行数(BA的行数),B的列数等于A的列数又因为AB有意义,所以A的列数等于B的行数所以A,B是同阶方阵

设A矩阵与任意n阶方阵可交换,怎样求矩阵A

真巧,我刚做过这道题\x0d\x0d请看图片:\x0d\x0d

矩阵可交换是什么意思?

满足乘法交换律的方阵称为可交换矩阵,即矩阵A,B满足:A·B=B·A.可交换矩阵的一些性质性质1设A,B可交换,则有:(1)A·B=B·A,(AB)=AB,其中m,k都是正整数;(2)Af(B)=f(

如果AB=BA,则称B与A可交换,求所有与A可交换的矩阵B,

设B=b1b2b3b4因为AB=BA所以有b1+b3b2+b400=b1b1b3b3所以b1+b3=b1b2+b4=b1b3=0故B=a+ba0ba,b为任意常数

若矩阵B,C都与A相乘可交换,试证BC,(B+C)也与A相乘可交换

(BC)A=B(CA)=B(AC)=(BA)C=(AB)C=A(BC(B+C)A=BA+CA=AB+AC=A(B+C)证毕

证明:若A和B都是n阶对称矩阵,则AB是对称矩阵的充要条件是A与B可交换

经济数学团队为你解答,有不清楚请追问.请及时评价.

如何将与矩阵A可交换的矩阵表示成A的多项式?

这一般做不到.比如A是单位矩阵,那么所有矩阵都和A可交换,但是除了数量矩阵以外,其余矩阵当然不能写成单位矩阵的多项式.

矩阵证明 设A, B均为n阶对称矩阵,证明AB是对称矩阵当且仅当A与B可交换

再问:那俩箭头啥意思再答:这都不知道,充分性、必要性这里只是提供思路,书写是不规范的,将就着看吧再问:哦,谢谢再答:不客气

设,AB均为n阶的对称矩阵,证明:AB为对称矩阵的充要条件是 A与B可交换

证明:因为A,B均为n阶的对称矩阵,所以A'=A,B'=BAB为对称矩阵(AB)'=ABB'A'=ABBA=AB即A与B可交换

可交换矩阵的求法设二阶矩阵A=1 10 1求其可交换矩阵.

设所求矩阵为B:abcdAB=a+cb+dacBA=aa+bcc+dBA=AB所以有:a+c=aa=0b+d=b+ad=0d=c+dc=0b无要求,任意取值.所以可交换矩阵是:00*0,其中*表示任意

什么是可交换矩阵?

如果AB=BA,那么称A和B可交换和可逆没关系

若复矩阵A与B可交换,即AB=BA,证明:A,B至少有一公共的特征向量

首先不妨把语言转化为线性变换:取定一组基,以A,B为矩阵的线性变换仍记为A,B.在复数域上,特征多项式一定有解,而每一特征值都有相应的特征向量.任取A的一个特征值λ,考虑A的属于λ的特征子空间W(即A

a,b均为n阶方阵,b为幂零矩阵a可逆矩阵,且ab可交换,证明a与a+b有相同的特征多项式

ab=ba可以得到a和b可以同时上三角化,然后就显然了再问:能不能说得再详细一点,高代是自学的,没上过课,学得不太好再答:先去看这个问题http://zhidao.baidu.com/question

如果AB=BA,则称B与A可交换.求所有与A可交换的矩阵B.

待定系数算一下就知道了么,答案是a+ba,a和b任意实数.0

A是对角矩阵,证明与A可交换的矩阵也为对角矩阵

题目少了条件,必须加上对角元素互不相同才可如图证明结论.经济数学团队帮你解答,请及时采纳.

证明:若n阶矩阵A与B可交换,则A与B的任意多项式f(A)与f(B)也可交换

为了证明这个命题,只需要证明A^k与B^m次方可以交换就可以了.因为A与B的任意多项式f(A)与f(B)相乘展开的每一项都是A^k*B^m的形式.由于A与B可交换,AB=BA,从而A^2*B=AAB=