矩形ABCD中,E是AD的中点,将三角形ABE沿直线BE折叠后,得到三角形GBE
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 18:59:45
解题思路:考查了直线与平面平行、平面与平面平行的判定和性质,及中位线的性质解题过程:
因为两个矩形相似∴AB:AE=AD:EF根据已知条件可得:AE=AD/2EF=AB∴AD^2=2AB又,AB=1∴AD=√2∴S=AB×AD=√2
(1)菱形连接MN,由矩形对称性可知MN为其对称轴容易证明Rt△MNB≌Rt△MNC,且NE,NF是直角三角形斜边上的中线∴有ME=EN=NF=FM,∴四边形MENF是菱形(2)对角线相等的菱形是正方
因为ABCD是菱形,所以AD平行且等于BC,因为FE分别是AD,BC中点,所以AF=EC,所以AF平行且等于EC,所以四边形AECF是平行四边形.又因为AB=AC,E为BC中点,所以AE垂直BC(三线
设AB=CD=2X,则AE=X 因为矩形ABCD与矩形EADF相似 所以AB/AD=AD/AE 因为AD=1 所以2X^2=1 所以X=√
(1)连接BD交AC于O点,连接EO,因为O为BD中点,E为PD中点,所以EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(2)因为PA⊥平面ABCD,CD⊂平面
矩形ABCD∽矩形EABF∴AE/AB=AB/AD然后计算即可,你题缺条件
因为E,F分别是矩形ABCD一组对边AD,CB的中点所以BF=1/2BC因为矩形AEFB∽矩形ABCD所以AB:BC=BF:AB即AB×AB=BC×BF设BC=2,则BF=1/2BC=1AB×AB=2
连接EF,△ABE∽Rt△DEF∵在Rt△GED与RtRt△DEF中,GE=AE=DEEF=EF∴△GED≌△DEF【HL】∵∠BEA=∠BEG,∠FEG=∠FED,∠AED=180°∴∠BEA+∠F
证明:∵O是AC的中点,∴AO=CO,又∵在矩形ABCD中,AD∥BC,∴∠1=∠2∴在△AOE和△COF中,∠1=∠2AO=CO∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴AE=C
作△CBE的中线EF,交BC为F;根据等边三角形三线合一,EF⊥BC,又四边形ABCD是平行四边形,所以EF//AB//CD,所以∠ABC=90°,有一个角是90°的平行四边形是矩形.
如图, ∵AO=CO,∠OAD=∠OCB(内错角),∠AOE=∠COF=90∴△AOE≌△COF, OE=OF∴AECF是菱形(对角线互相垂直且平分的四边形是菱形)
(1)连接GE∵E,G分别是PD,PC中点∴EG是ΔPCD的中位线∴EG//CD且EG=1/2*CD∵F是AB中点,底面ABCD是矩形∴AF//CD且AF=1/2*CD∴AF//=EG∴四边形AFGE
af:cf=bf:ef=ab:ce=2:1bc^2+ce^2=be^2=9ef^2=3+ce^2ef^2=ce^2-cf^2=ce^2-(3-4ef^2)ce=(根号6)/2ac=根号下(3+6)=3
根据题意,可知AE=FB=AD/2=BC/2∵AEFB∽ABCD∴AE/AB=AB/BCAB^2=AE·BC=(BC/2)·BC=BC^2/2(AB/BC)^2=1/2AB/BC=√2/2答:AB:B
(1),因为△CBE是直角三角形,所以CE=BC²+BE²,再开方,也就是说,CE=根号68.(2),又因为∠BEC=∠CFD,且△CBE与△DFC都是直角三角形,所以它们相似.那
因为矩形AEFB∽矩形ABCD,所以对应边成比例.即:AB:BC=BF:AB=(BC/2):AB所以:AB:BC=(BC/2):AB得出AB^2=(BC^2)/2两边开根号:AB:BC=(根号2)/2
AB:BC的值为二分之根号二.