矩形ABCD,AB=24,AD=12,点E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 21:20:47
矩形ABCD,AB=24,AD=12,点E
如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD∽矩形EABF,AB=1.求矩形ABCD

由矩形ABCD∽矩形EABF可得AEAB=ABBC,设AE=x,则AD=BC=2x,又AB=1,∴x1=12x,x2=12,x=22,∴BC=2x=2×22=2,∴S矩形ABCD=BC×AB=2×1=

E,F分别是矩形ABCD的边AD,BC的中点,若矩形ABCD相似于矩形EABF,AB=10,求矩形ABCD的面积

因为两个矩形相似∴AB:AE=AD:EF根据已知条件可得:AE=AD/2EF=AB∴AD^2=2AB又,AB=1∴AD=√2∴S=AB×AD=√2

已知E.F分别是矩形ABCD边AB和CD的中点,若矩形ABCD与矩形EADF相似,AD=1,求矩形ABCD的面积

 设AB=CD=2X,则AE=X 因为矩形ABCD与矩形EADF相似 所以AB/AD=AD/AE 因为AD=1 所以2X^2=1 所以X=√

如图,在矩形ABCD中,AB=2,AD=根号3.

(1).以A为圆心,以AB长为半径画弧,交DC边于E,连接BE,则BE为∠AEC的角平分线.    证明:由作图可知,三角形ABE为等腰三角形 &nb

矩形ABCD中,AB=2,AD=根号3,H是AB中点,以H

我将你题目中的a改为θ.然后给你的答案如以下示例、;   希望我的回答对你的学习有帮助,再问:请问EF是用FH^2+EH^2=EF^2吗?再答:是用它们来表示的。。。这是

如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=10.求矩形ABCD的面积.

设BC长X因为矩形ABCD和矩形EABF相似则X/10=10/(0.5X),解得X=10√2所以矩形ABCD面积=10X=100√2=141.42

如图所示,一直矩形ABCD,AB=1,四边形ABFE是正方形,若矩形CDEF与矩形ABCD相似,则AD的长为?

∵相似∴AD:CD=AB:CF∵AD=CF+1∴CF+1:1=1:CF∴CF=(根号5-1)/2∴AD=(根号5+1)/2

1.E,F分别为矩形ABCD的边AD、BC的中点,若矩形ABCD∽EABF,AB=1.求矩形ABCD的面积.

AE:1=1:ADAD=2AEAE;1=1:2AEAE=二分之一倍根号2AD等于根号2面积等于根号2

如图,E.F分别为矩形ABCD的边AD.BC的中点,若矩形ABCD相似矩形EABF,AB=1.求矩形ABCD的面积.

∵矩形ABCD∽矩形EABF∴AB/EA=AD/EF又∵E.F分别为矩形ABCD的边AD、BC的中点,AB=1∴EA=1/2AD,EF=AB=1∴AD=√2(-√2舍去)∴S矩形ABCD=1*√2=√

如图所示,把矩形ABCD对折,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4.1,求AD的长 2,求矩形DMN

图咧……再问:图片网址http://www.ykw18.com/UploadFile/TQuestion/2012/09/26/17/10/8d845bec.png

把矩形ABCD折叠,折痕为MN,矩形DMNC与矩形ABCD相似,已知AB=4,求AD的长

把矩形ABCD折叠,折痕为MN,矩形DMNC与矩形ABCD相似:∴MD/AB=CD/AD又:MD=1/2AD,CD=AB∴1/2AD/AB=AB/AD∴AB^2=1/2AD^2AD^2=2AB^2∴A

证明平行四边形为矩形四边形ABCD中:AD‖BC AB=CD ∠B=90°求证:四边形ABCD为矩形.有疑问.不能为矩形

可证为矩形!AD‖BC==>ABCD在同一平面∠B=90°==>线段AB为平行线AD与BC的距离AB=CD==>线段CD为平行线AD与BC的距离==>CD垂直BC==>AB‖CD==>AB与CD平行且

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2 S 矩形ABCD=3S矩形ECDF

S矩形ABCD=3S矩形ECDF推出AF=2FD——(1)矩形ABCD~矩形ECDF且AB=2推出AF*FD=FE*FE=AB*AB=4(2)设FD=x,则由(1)得AF=2x未知数代入(2)中,2x

如图矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF且AB=2,S矩形ABCD=S矩形ECDF,试求

S矩形ABS矩形ECDF?那不是E就是B,F就是A!已知一条边,算不了面积,题目有问题.再看清楚一点题目,改了还是算不了的.再问:题目就这样再答:S矩形ABCD=3S矩形ECDF所以BC=3CE,(1

如图,矩形ABCD中,E,F分别在BC,AD上,矩形ABCD~矩形ECDF,AB=2,S矩形ABCD=9S矩形ECDF,

答案=12求解如下:答:因为:S矩形ABCD=9S矩形ECDF所以:AB*BC=9*EC*CD,又因为:AB=CD=2所以:BC=9EC(1)因为:矩形ABCD~矩形ECDF所以:AB/EC=BC/C

矩形ABCD中,E、F分别在BC、AD上,矩形ABCD相似矩形ECDF,且AB=2,S矩形ABCD=4S矩形ECDF,

S矩形ABCD=4S矩形ECDF==>相似比为2矩形ABCD相似矩形ECDF==>BC:CD=相似比2CD=AB=2BC=4面积=2*4=8