知正方形ABCD中,G为对角线BD上一点, 求证:AG=CD

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 20:46:07
知正方形ABCD中,G为对角线BD上一点, 求证:AG=CD
如图,在正方形ABCD中,对角线

证明:∵四边形ABCD是正方形∴OD=OC,OD⊥OC∴∠COF=∠BOE=90°又∵OE=OF∴△COF≌△BOE(SAS)∴CF=BE

智商高的进1、已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG

(1)易证GC=DF/2=GE[直角三角形斜边上的中线等于斜边的一半]∠CGE=2∠GDC+2∠GDE=2∠EDC=90°(2)连结GA,易证GA=GC,过G作GHAB于H,易证AH=EH,GA=GE

16.如图,在正方形ABCD中,E为对角线AC上一点,EF⊥CD于F,EG⊥AD于G,证明:BE=FG

证明:连EDABCD是正方形∴BC=CD∠BCE=∠DCE=45°∴△BCE≡△DCE∴BD=DE又FEGD是矩形∴ED=FG∴BE=FG施主,我看你骨骼清奇,器宇轩昂,且有慧根,乃是万中无一的武林奇

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG. (1

(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E

正方形ABCD中,AC是对角线

解题思路:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)解题过程:

在正方形ABCD中,AC为对角线,E为AC上一点,连接EB、ED.

(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠ECB=∠ECD=45°.∴在△BEC与△DEC中,BC=CD∠ECB=∠ECDEC=EC∴△BEC≌△DEC(SAS).(2)∵△BEC≌△DE

已知E在正方形ABCD中,对角线bd上的一点,EF⊥BC EG⊥CD,垂足分别为F,G若正方形ABCD的周长为30

EF=BF,EG=DG,四边形efcg的周长=EF+FC+CG+EG=BF+FC+CG+DG=BC+CD=正方形ABCD的周长的一半=30/2=15再问:为什么EF等于EG再答:EF=BF,没说EF=

如图,在正方形abcd中,e为对角线bd上一点,过点e作ef垂直于bd交bc于e于f,连接df,g为df中点,连接eg、

(1)在Rt△FCD中,∵G为DF的中点,∴CG=1/2FD.同理,在Rt△DEF中,EG=FD.∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与E

1.已知正方形ABCD中,E为对角线BD上一点,过E做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG,求证

证明:∵EF⊥BD,∴△DEF为直角三角形,∵G为DF中点,∴EG=1/2DF,(直角三角形斜边上的中线等于斜边的一半),在正方形ABCD中,∠BCD=90°,又G为DF中点,∴CG=1/2DF,(直

如图,在正方形ABCD中,对角线2倍根号2,则正方形的边长为?

设正方形的边长为x,则x²+x²=(2√2)²2x²=8x²=4x=2所以正方形的边长为2

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.求证:

证明:∵EF⊥BD,∴△DEF为直角三角形,∵G为DF中点,∴EG=12DF,(直角三角形斜边上的中线等于斜边的一半),在正方形ABCD中,∠BCD=90°,又G为DF中点,∴CG=12DF,(直角三

如图,在对角线长为8cm的正方形abcd中,e为bc上的一点,ef垂直于bd,eg垂直于ac,垂足分别为f、g,求

设对角线交点O连接OE,作OH⊥BC∵AC=BD=8∴BO=CO=4OH=2倍根号2,BC=4倍根号2△BOC面积=△OEB+△OEC即1/2*BC*OH=1/2*EF*BO+1/2*EG*OC∴2E

4.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………………1分同理,在Rt△DEF中,EG=FD.………………2分∴CG=EG.…………………3分(2)(1)中结论仍然成立,即EG=C

已知正方形ABCD中,E为对角线BD上一点,过E点做EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG

分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△

如图1 ,已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,C

前天刚做过的题目,一起分享一下吧!答案不错吧!给你推荐一些学习资源吧!在百度视频搜“智能家教 学习方法与家庭教育新理念”,40分钟,介绍了学习所必须遵循的规律、家庭教育原则、学生在学习中和家

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45,如

已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.

(1)知识点:直角三角形斜边的中线等于斜边的一半.  在Rt三角形CDF中,G为DF的中点,所以CG=DF/2  在Rt三角形EDF中,G为DF的中点,所以EG=DF/2所以CG=EG=DF/2  (

要具体过程.谢.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接E

延长CG到H,使CG=HG连结HE,HF,EC,设HF的延长线交BC于I∵FG = GD,∠HGF = ∠CGD,HG = GC∴△HFG&

在正方形ABCD中,对角线为2根号2,则正方形边长为_____.并说明为什么

因为正方形对角线与两边,形成一个等腰直角三角形,两个锐角均为45°,根据购股定理得设边长x则x^2+x^2=(2根号2)^2=8,2x^2=8,x^2=4,x=正负2,因为三角形边长为正数,所以x=2