知是公差不为零的等差数列, ,a1=1且成等比数列. (1)求数列的通项;
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 21:58:23
(Ⅰ)设公差为d,由条件得5a1+5×42d=30(a1+2d)2=a1(a1+8d),得a1=d=2.∴an=2n,Sn=2n+n(n-1)×22=n2+n;(Ⅱ)∵1Sn+an+2=1n2+n+2
因为b1=a1²,b2=a2²;所以b1>0,q>0且q≠1({an}公差不为零)所以a1=√b1,a2=√(b1*q),a3=q*√b12a2=a1+a3->2√(b1*q)=√
令{an}公差为d,由b2^2=b1*b3得:a2^4=a1^2*a3^2两边开方得:a2^2=a1*a3或a2^2=-a1*a3当a2^2=a1*a3时,有: (a
(1)根据题意,设公差为d则a3=a1+2d=2d+1a9=a1+8d=8d+1有(2d+1)^2=8d+1d=1故通项:an=n(2)根据题意,设公比为q则b2=qb3=q^2有q-0.5q^2=0
a9=a5+4da15=a5+10d(a5+4d)²=a5(a5+10d)8da5+16d²=10da516d²-2da5=02d(8d-a5)=0d=a5/8所以a9=
设公差为d(d≠0),由题意a32=a2•a6,即(a1+2d)2=(a1+d)(a1+5d),解得d=-2a1,故a1+a3+a5a2+a4+a6=3a1+6d3a1+9d=−9a1−15a1=35
(1)∵数列{an}是公差不为零的等差数列,a1=2,且a2,a4,a8成等比数列,∴(2+3d)2=(2+d)(2+7d),解得d=2,∴an=2n.(2)∵an=2n,∴3an=32n=9n,此数
(1)a3=a1+2d、a6=a1+5d.(a1+2d)^2=a1(a1+5d)a1^2+4a1d+4d^2=a1^2+5a1d4a1d+4d^2=5a1d因为d0,所以4a1+4d=5a1a1=4d
(1)由题意可得(a1+d)2+(a1+2d) 2=(a1+3d)2+(a1+4d)27a1+21d=7联立可得a1=-5,d=2∴an=-5+(n-1)×2=2n-7,sn=−5n+n(n
∵a1=1,a1,a3,a9成等比数列,∴a1a9=a23,即1+8d=(1+2d)2,∴4d=4d2,解得d=1,∴an=1+n-1=n,an•2an=n•2n,则sn=1⋅2+2⋅22+⋅⋅⋅+n
设{an}公差为d,{bn}公差为d'lim(an/bn)=lim[(a1+(n-1)d]/[b1+(n-1)d']=lim[(a1-d)+nd]/[(b1-d')+nd']=lim[(a1-d)/n
设该等差数列是首项为a1,公差为dS3=3a1+3(3-1)*d/2=3a1+3dS2=2a1+2(2-1)*d/2=2a1+dS4=4a1+4(4-1)*d/2=4a1+6d又:S3²=9
(1)因为a4,a5,a8成等比数列,所以a52=a4a8.设数列{an}的公差为d,则(3+3d)2=(3+2d)(3+6d)化简整理得d2+2d=0.∵d≠0,∴d=-2.于是an=a2+(n-2
解a1=1a2=1+da5=1+4da1a2a5成等比所以(1+d)^2=1*(1+4d)d^2-2d=0d=2d=0(舍)所以an=a1+(n-1)d=1+(n-1)*2=2n-1
a1a2a3成等比数列a2^2=a1a3=a3(a1+d)^2=a1+2da1^2+2a1d+d^2=a1+2d1+2d+d^2=1+2dd^2=0d=0公差不为零的等差数列错题
数列{an}是公差不为0的等差数列,设公差为d,S1,S2,S4成等比数列,则S22=S1•S4,∴( 2a1+d)2=a1•(4a1+6d),化简可得d=2a1∴a3a1=a1+2da1=
设首项为a1,公差为d.由题得:a1+a5=2*4a1*a7=a₃^2则:a1+(a1+4d)=8a1(a1+6d)=(a1+2d)^2综上解得a1=2d=1所以S5=20
(I)设等差数列{an}的公差为d,由题意知d为非零常数∵a1=1,a1、a3、a9成等比数列∴a32=a1×a9,即(1+2d)2=1×(1+8d),解之得d=1(舍去0)因此,数列{an}的通项公
a2=a1+da3=a1+2da6=a1+5d由等比数列性质(a1+2d)^2=(a1+d)(a1+5d)a1=-1/2dq=a3/a2=3