相关分析中的相关系数较小,但sig值也很低
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/12 02:48:35
看sig的值小于0.05,甚至是小于0.01,说明两者之间的确存在显著的相关,只不过相关值不大罢了,就这么说就好了再问:谢谢您的热心回答。可是我觉得如果说两者之间存在显著的相关,那相关系数应该很大啊为
相关系数是不能确定因果关系的,比如一个人想知道身高与体重是否有关系才做相关分析.你想做的可能是简单一元回归分析,看自变量和哪个因变量拟合.有什么问题call我QQ409500841
从表中我们可以看到,EDI与EDI的相关系数为1(这是显然的,自己跟自己跟定线性相关),类似的,矩阵对角线位置都是1.其余不相同的两个变量相关系数在-1到1之间,如EDI与HP的相关系数为0.261.
multipleR
我看有人给你回答过很详细了到底怎么调整模型你要自己看书然后做自己的数据别人帮不了原因是相关系数是两个变量间的关系而回归分析包括了多个变量这些变量会互相影响可能影响1是否每个系数都有统计学意义-t检验的
是显著的,没什么好理解的如果没法理解kendall系数,干脆就让人帮你做分析我经常帮别人做这类的数据分析的
1.单击“Analyze”,展开下拉菜单2.下拉菜单中寻找“Correlate”弹出小菜单,从小菜单上寻找“Bivariate...”,单击之,则弹出相关分析“BivariateCorrelation
相关系数0.624大约属于中等量级的相关,在样本量足够大的情况下一般都会有显著性,你的情况应该是样本量偏小造成的.此外,pearson相关系数的正确性需要得到散点图的证实,你应该检查一下散点图,看看数
您可以放送给我,但是你也知道这个需要制作时间,你有什么要求也请说明清楚,再问:我发送了,请注意查收,谢谢!再答:我看您发送给我的Word版资料,我不是你相关专业的,所以不太了解具体情况。其实您最好告诉
进行相关与回归分析应注意对相关系数和回归直线方程的有效性进行检验.判断题(正确).
看你的目的了你如果只是要看这些自变量之间的相关性,那就这样就可以了.如果你要将自变量进行主成分分析,那相关性高就适合做因子分析如果你要将自变量与因变量构建模型,那自变量的相关性高,说明共线性严重,需要
不能只看相关系数的大小,主要看显著性水平,你做出来的相关系数确实是有些低,很可能是与数据量比较多有关.如果你分析过程没有错误,p真的等于0.003的话,应该是显著相关的.再问:谢谢,我还想问一下,我的
相关性系数1≤|r|≥0,一般认为|r|≥0.6时认为相关性是显著的,具体的怎么去计算要查统计学上的r(n-2)分布表,它与回归方程Y=a+bx中的b有相同的正负符号!
不能用皮尔森相关检验,结果只能说明两变量的相关性,不能推及到有没有相互影响的结论.统计理论与语言都是要求很严谨和精确的,有没有影响可以做回归分析,如果结果是有影响,也只能说是自变量X对因变量Y有影响,
通常,两个变量之间若存在着一一对应关系,则称两者存在着函数关系,相关函数又分为自相关函数和互相关函数.当两个随机变量之间具有某种关系时,随着某一个变量数值的确定,另一变量却可能取许多不同的值,但取值有
相关系数的显著性检验的目的是为了检验两个变量之间样本相关系数r(r≠0)与一个相关系数=0的已知总体之间的差别是否是由于抽样误差所产生的,如果差别有统计学意义,则说明两个变量之间存在相关关系.在已经检
在线性回归有,有上述关系.即:R^2=r^2在其实回归模型中不一定适用.R^2表达的是解释变量对总偏差平方和的贡献度,强调的是“几个模型”之间的拟合度的好与坏.r表示解释变量与预报变量之间线性相关性的
从你的统计结果看,两者均不相关(SIG均大于0.05)但是,你采用方法可能不对,年级、性别都是定序变量,不适合用皮尔森相关系数分析的
建议先去查阅一下“相关系数”的解读方法,数据之间的关系有多种,比如相关关系,因果关系.相关系数是考察变量间相关关系的一种方法,通过相关系数,可以看出他们之间大概的关系.
相关系数R表示两个变量之间线性相关关系再问:什么意思啊再问:哦哦,谢谢再问:对了,那r怎么算