直角AOB三个顶点都在抛物线y²=2px上 其中直角顶点为原点

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/13 00:22:49
直角AOB三个顶点都在抛物线y²=2px上 其中直角顶点为原点
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(1,0)、C(3,0)、D(3,4).,以A为顶点的抛物线y=a

(1)A(1,4)由题意知,可设抛物线解析式为y=a(x-1)2+4∵抛物线过点C(3,0),∴0=a(3-1)2+4,解得,a=-1,∴抛物线的解析式为y=-(x-1)2+4,即y=-x2+2x+3

已知抛物线C的顶点在原点,焦点在x轴上,Rt三角形AOB的三个顶点在抛物线C上,直角顶点O为原点,OA所在直线的方程为y

设抛物线的为y^2=2ax(x∈R)∵OA向量⊥OB向量∴OB所在直线方程为y=-1/2xps:互相垂直的两条线它们的斜率之积为-1∵y^2=2ax,y=2x得A(a/2,a)∵y^2=2ax,y=-

一个正三角形的三个顶点都在抛物线y^2=4x上,其中一个顶点为坐标原点,求S△

设其中一个顶点是(x,2*根号x)因为是正三角形所以2*根号x/x=tan30=根号3/34/x=1/3x=12所以另外两个顶点是(12,4倍根号3)与(12,-4倍根号3)S△=12*(4倍根号3+

RT三角形AOB三个顶点在抛物线Y^2=2MX上,直角顶点O为原点,OA所在直线方程为Y=2X,AB=5倍根号13

OA垂直OBOA斜率是2,所以OB是-1/2所以OB是y=-x/2y=2x,代入,4x^2=2mx,x=0就是O,所以x=m/2,y=2x=m所以A(m/2,m)y=-x/2,代入,x^2/4=2mx

直角△AOB的三个顶点在抛物线Y^2=2MX(M∈R)上.直角顶点O为原点.OA所在直线的方程为Y=2X.斜边AB长为5

∵OA的直线方程为y=2x,∴OB直线方y=-x/2设A点坐标()B点坐标()用A点和B点代入抛物线和AB之间的距离得三个方程,解方程组得m=2和m=-2∴此抛物线y平方=4x和y平方=-4x

已知正三角形OAB的三个顶点都在抛物线y^2=2x上,其中O为坐标原点,设圆C是三角形OAB的外接圆

1)设A(y²/2,y)B(y²/2,-y)根据OA=AB☞y=2√3,AB=4√3根据正弦定理2R=AB/sin∠AOB=8,R=4那么目标:(x-4)²+

已知正三角形OAB的三个顶点都在抛物线y²=2x上,其中O为坐标原点,则△OAB的外接圆的方程是?

因为AB均在抛物线上,显然A,B分别在x轴的上下方,而且关于x轴对称,设AB与x轴的交点为C(c, 0)y²=2cy = ±√(2c)A(c, √(2

Rt△AOB的三个顶点在抛物线y^2=2px(p>0)上,直角顶点O为原点,OA所在直线的方程为y=2x,

Rt△AOB,O(0,0),OA⊥OB,AB=5√3OA:y=2xk(OA)=2,k(OB)=-0.5,OB:y=-0.5xyA^2=2p*xA.(1)yA=2xA.(2)(1)/(2):yA=p,x

在平面直角坐标系XOY中,一直点A、B都在抛物线y=ax05上,△AOB为等边三角形,且面积为48倍根号3

显然抛物线y=ax^2过原点且焦点在y轴上,图象关于y轴对称又点A、B都在抛物线y=ax^2上,△AOB为等边三角形则可以推出A,B也关于y轴对称设A(x0,ax0^2)则B(-x0,ax0^2)(x

等腰直角三角形的直角顶点位于原点,另外两个顶点在抛物线y^2=2x上

首先另外两个顶点可表示为x=y和x=-y因为边与坐标轴夹角为45°另外y^2=2x解这两个方程得(2,2)(2,-2)

如图,在平面直角坐标系中等腰直角△AOB的斜边OB在X轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A.

如图1,在平面直角坐标系中,等腰Rt△AOB的斜边OB在x轴上,直线y=3x-4经过等腰Rt△AOB的直角顶点A,交y轴于C点,双曲线y=k/x(x>0)也恰好经过点A.(1)求k的值;(2)如图2,

RT△AOB的三个定点均在Y^2=2px上,直角顶点为原点O.直线OA的方程为2X,斜边AB长为5根号13.求抛物线的标

∵OA的直线方程为y=2x,∴OB直线方y=-x/2设A点坐标()B点坐标()用A点和B点代入抛物线和AB之间的距离得三个方程,解方程组得m=2和m=-2∴此抛物线y平方=4x和y平方=-4x

设△AOB的顶点均是在抛物线y^2=2px(p>0)上,其中O为坐标原点.若△AOB的垂心恰好是抛物线的焦点,求△AOB

△AOB的垂心恰好是抛物线的焦点,AB⊥X轴,OA=OB,xA=xB,yA=-yBp>0,F(P/2,0)设xA=xB=a,则y=±√(2pa)AF⊥OB设yA=√(2pa),yB=-√(2pa),则

已知三角形AOB的顶点都在抛物献上,O为抛物线的顶点,若直线AB过抛物线的焦点,则三角形AOB一定是( )

C过(2p,0)的直线与原点构成直角三角形.焦点(0.5P,0).往里走走,肯定是钝角三角形.

直角三角形AOB的三个顶点都在抛物线y^2=2px上,其中直角顶点O为原点,OA所在直线的方程为y=√3x,△AOB的面

OA:y=√3xy^2=2px3x^2=2pxx=0,2p/3y=0,2p/√3OA=4p/3OB:y=-(1/√3)xx^2/3=2pxx=0,x=6py=0,(6√3)pOB=12p(4p/3)*

三角形的三个顶点都在抛物线上,且有一个顶点与抛物线的顶点重合,我们把

(1) 3倍根号3和1(2)与a无关,都是3倍根号3(3)-1和-3具体计算过程我在word里用公式编辑器写了,有详细的计算过程,

三角形的三个顶点都在抛物线上,且有一个顶点与抛物线的顶点重合,我们把这样的三角形定义为抛物线的内接

希望我的图片够清晰(最后一题详见解释)(1)面积△ABC=3√3,△ADE=1(2)面积△ABC=(3√3)/a^2,△ADE=1/a^2 所以面积并不是不变,而是随a值的改变而发生改变(3

RT△AOB的三个顶点都在抛物线y²=2px上,其中直角顶点O为原点 OA所在直线的方程为y=√3 x,△A

由OA所在直线的方程为y=√3x,抛物线y²=2px可得A(2p/3,2p/√3),则OA=4P/3,同理可得OB=4√3p,则,△AOB面积为6√3=1/2*OA*OB,可解得p=3/2,

在平面直角坐标系xOy中,二次函数y = +1的图象是抛物线D.若平行四边形OABC的顶点A,B都在抛物线上,且y轴

(1)∵AB⊥y∴AB//x∴y(B)=y(M)=y(A)=2y(A)带入D得x(A)=2∴x(B)=-2∵CO=AB=4∴C(-4,0)(2)①1:CM//PQk(CM)=1/2∵P(t,0)∴Q(