inx √xdx
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/11 04:25:57
令t=√x,t范围为(0,2),则∫(0,4)2/(1+√x)dx=∫(0,2)2/(1+t)d(t²)=∫(0,2)4t/(1+t)dt=4∫(0,2)(t+1-1)/(1+t)dt=4∫
√x=tx=t²dx=2tdt∫arctan√xdx=∫2tarctantdt=∫arctantdt²=t²arctant-∫t²/(1+t²)dt=
用分步积分法就可以做出来了∫arctan1/xdx=xarctan(1/x)-∫xdarctan1/x=xarctan(1/x)-∫x/[1+(1/x)^2]*(-1/x^2)dx=xarctan(1
再问:好快~而且是图片所以很清楚~赞再答:有点误再问:只是最後答案算错了吗?再答:是的另有简单方法如下:再问:厉害喔~!!谢谢你~🙏再答:做完后发现此题考察是积分函数的绝对值和奇偶性再
=(1/3)∫d(3x^2-1)/√(3x^2-1)=(2/3)√(3x^2-1)+C
∫ln(1+x)/√xdx=2∫ln(1+x)/(2√x)dx=2∫ln(1+x)d√x=2ln(1+x)*√x-2∫√xdln(1+x),integrationbypart=2(√x)ln(1+x)
因为(2√u)'=(2*u^0.5)'=2*0.5*u^(-0.5)=1/u^0.5=1/√u,所以∫(1/√u)du=2√u+c,把lnx看作u即得:∫(1/√lnx)d(lnx)=2√lnx+c,
(1)∫(inx)平方1/xdx=∫(lnx)平方d(lnx)=1/3(lnx)立方(2)y=1-x/根号xy’=(-1*根号x-1/2x(-1/2次方)*(1-x))/x这个在知道上面打蛮麻烦的就用
首先1+tan²x=1/cos²x,所以∫√1+tan²xdx=∫1/cosxdx而∫1/cosxdx=∫cosx/cos²xdx=∫1/(1-sin²
∫inx/√xdx=2∫inxd√x=2√xlnx-2∫√x*1/xdx=2√xlnx-2∫1/√xdx=2√xlnx-4√x+c
1.的确是如你所说的,教材上估计错了2.分子(1+sinx)^2,分母得到1-sin^2x=cos^2x,把ln外面的1/2放到ln里面,则里面的式子分子分母开根号后得到(1+sinx)/cosx,由
没有错.你的老师说你错?你把下面的求导结果给他看,他如果还说你错.那就很不幸了,遇到一个又笨有固执的迂夫子,能换班赶紧换班.如果只是跟答案不一样,没有关系,只要求到对,就不用担心.加油!相信自己!To
再问:лл��再问:�����ٰ�æ���һ����?再问:����0,��/4���Ķ����tan^2xdx再答:再问:���ٶ�..��ݣ�再问:����?�����������再答:˵��再问
∫arctg√xdx=xarctg√x-∫xdarctg√x=xarctg√x-∫x/(1+x)d√x=xarctg√x-∫1-1/(1+x)d√x=xarctg√x-√x+∫1/(1+x)d√x=x
∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C
∫(1/(x√(1+Inx)))dx=∫(d(1+lnx)/√(1+Inx)=2√(1+lnx)+C
答:∫√lnx/xdx=∫√lnxd(lnx)=(2/3)*(lnx)^(3/2)+C