由来自正态总体x~n(u,1^2).容量为100的简单随机样本,得样本均值为10

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:37:53
由来自正态总体x~n(u,1^2).容量为100的简单随机样本,得样本均值为10
关于概率论的一道计算X1,X2.X2n 是来自正态总体(u,σ^2) 的一个简单随机样本,其样本均值为X,=1/2n(∑

哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����

以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,设随机变量ξ服从标准正态分布N(0,1),已知Φ(-1.96)

解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知

设(X1,X2,……,Xn)是取自正态总体N(U,δ^2)的样本,

EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516

设X1,X2,...Xn是来自正态总体X~N(μ,σ^2)的简单随机样本

因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+

设X1,X2.Xn是来自正态总体N(0,1)的样本,则随机变量Y=C(X1-X2+X3-X4)^2~x^2(1)则常数C

E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,

一道概率论的题,U[0,θ],x1,x2,.xn为采自总体X的一个容量为n的简单随机样本.求θ的最大似然估计θ2,并说明

看图详~如果您认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端上评价点【满意】即可~~~您的采纳是我前进的动力~~~如还有问题,可以追问~~~祝学习进步,更上一层楼!O(∩_∩)O

自正态总体中随机抽取容量为n的样本,均值33,标准差4,当n=25,总体均值95%的置信区间是?当n=5又是多少?

将样本中超出西格玛区间的值除去,再求出均值,直到都在西格玛区间内,求出的置信区间才是对的,再试试!

已知总体Y服从正态分布N(u,1),且Y=lnX,求X的期望E(X)

E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)

设总体X服从正态N(μ,σ²),x1,x2,xn为其总体的样本,求该样本的联合概率密度

fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,

5.设由来自正态总体 的容量为16的简单随机样本,得样本均值 =100,求(1)总体均值μ的点估计;(2)总体均值μ的置

1.总体均值μ的点估计当然是1002.没有标准差怎么算第二小题?假设这个标准差是8,置信度0.95时,z=1.96,总体均值μ的置信区间=(100-1.96×8/100的平方根,100+1.96×8/

在标准正态总体N(0,1)中,已知φ(1.98)=0.9762,则标准正态总体在区间(-1.98,1.98)内取值的概率

∵标准正态总体N(0,1)中,正态曲线关于x=0对称,∵φ(1.98)=0.9762,∴P(-1.98<x<1.98)=1-2(1-0.9762)=0.9524故答案为:0.9524.

设X1,X2,...Xn+1为来自正态总体X~N(u,)的容量为n的样本,,为样本X1,X2...,Xn的样本均值和样本

上面这个网址有关于这个结论的详细证明,如有不懂可追问.

设X1,X2,...Xn是取自正态总体X~N(μ,σ^2)的一个样本,则1/(σ^2)∑(X-μ)^2 服从的分布是()

服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~

设X1,X2,...Xn+1为来自正态总体X~N(u,o^2)的容量为n+1的样本,X均,S^2为样本X1,X2...,

(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n

设X1,X2,…Xn为总体X~U[a,b]的样本,试求:X(1)的密度函数;X(n)的密度函数.

已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b