由来自正态总体x~n(u,1^2).容量为100的简单随机样本,得样本均值为10
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/10 17:37:53
哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����
解法一:∵ξ~N(0,1)∴P(|ξ|<1.96)=P(-1.96<ξ<1.96)=Φ(1.96)-Φ(-1.96)=1-2Φ(-1.96)=0.948解法二:因为曲线的对称轴是直线x=0,所以由图知
再问:请问Var是什么啊?再答:方差呀
EX(X上面一横杠)=E[(X1+X2+……+Xn)/n]=1/n[E(X1)+E(X2)+……+E(Xn)]=1/n(U+U+……+U)=U1516
因为是简单随机样本,所以各样本间相互独立,那么就有:E(X1+X2+……+Xn)=E(X1)+E(X2)+……+E(Xn)=μ+μ+……+μ=nμD(X1+X2+……+Xn)=D(X1)+D(X2)+
E(X1-X2+X3-X4)=0D(X1-X2+X3-X4)=4D(X)=4χ²(1)D(√c(X1-X2+X3-X4))=c4=1c=1/4如有意见,欢迎讨论,共同学习;如有帮助,
看图详~如果您认可我的回答,请及时点击【采纳为满意回答】按钮~~手机提问者在客户端上评价点【满意】即可~~~您的采纳是我前进的动力~~~如还有问题,可以追问~~~祝学习进步,更上一层楼!O(∩_∩)O
U=n^(1/2)*(xˉ-μ)/σ~N(0,1),D(U)=1.
将样本中超出西格玛区间的值除去,再求出均值,直到都在西格玛区间内,求出的置信区间才是对的,再试试!
E(X)=∫(-∞,∞)e^y*(1/2π)^(1/2)*e^((y-u)/2)^2dy=e^(1/2+u)
fX(x)=φ((x-u)/σ)/σf(X1,X2,...Xn)=fX1(x1)fX2(x2)..fXn(xn)=(1/√(2π)σ)^n*e^Σ(xi-u)²/(2σ)如有意见,欢迎讨论,
1.总体均值μ的点估计当然是1002.没有标准差怎么算第二小题?假设这个标准差是8,置信度0.95时,z=1.96,总体均值μ的置信区间=(100-1.96×8/100的平方根,100+1.96×8/
∵标准正态总体N(0,1)中,正态曲线关于x=0对称,∵φ(1.98)=0.9762,∴P(-1.98<x<1.98)=1-2(1-0.9762)=0.9524故答案为:0.9524.
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
服从X^2(n-1)分布,那个X不是未知数X,长得像而已,手机打不出来,抱歉.因为(x-u)^2求和,等于n-1倍的样本方差平方,然后就是定理了,手机不好打阿~
(1)如果对任意的n,有Xn+1=Xn+2计算X2=(5)X3=(7)X4=(9)①根据上面一小题的结果,请试着把Xn用n表示出来:Xn=(2n+1)②计算X2004=(2009)(2)如果对任意的n
第一个标准正太第二个t(n-1)
已知是均匀分布,立刻能写出每一个Xi的密度函数都是f(x)=1/(b-a)a<Xi<b那么它们的分布函数也能写出:当Xi<a时,F(x)=0当a<Xi<b时,F(x)=∫f(t)dt=(x-a)/(b