由y=x ,x轴及x=1围成的图形分别绕X ,Y轴旋转所得旋转体的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 00:51:32
由y=x ,x轴及x=1围成的图形分别绕X ,Y轴旋转所得旋转体的体积
由曲线 Y=根号x,直线Y=x-2及直线x轴 所围成的图形的面积为 请详解

你好!第一步画图,找交点【过程略】第二步,以y为积分变量求面积S=∫[(y+2)-y²]dy=[-1/3y³+y²/2+2y]=16/3

由曲线y=x^2-1及x轴所围成的图形面积为

大学的吧?可以用积分么?第一步:求曲线与x轴的交点坐标为(—1,0)和(1,0),画出图形,判断出所求面积是位于y轴下方的弓星面积;第二步:对y=x^2-1积分,上下限为—1到1(注:原函数为(x^3

由直线y=x,y=-x+1,及x轴所围成的平面图形的面积为?一般方法

直线y=x,y=-x+1,及x轴所围成的平面图形为一直角三角形.联解y=x,y=-x+1.得交点为(1/2,1/2).y=-x+1与x轴的交点为(1,0).故平面图形的面积为1/2*1*1/2=1/4

由曲线 Y=根号x,直线Y=x-2及直线x=1 所围成的图形的面积为 请详解

y =√x和y = x -2的交点为A(4, 2), 另一点为增根,舍去.= ∫(1,2)[√x - (x-2

计算由曲面z=x*x+y*y及平面z=1所围成的立体体积

z从0到1,立体垂直于z轴的截面为圆,半径r^2=x^2+y^2,面积s=πr^2=π(x^2+y^2)=πz.所以V=s(z)从0到1的积分,所以V=πz^2/2|(0,1)=π/2-0=π/2由旋

求由y=|lnx|,x=1/e,x=e及x轴所围成图形的面积

如图所示:再问:�����Ԫ����ô��ʾ�����е�һ������ͼ���Ǿ��ֵ�ġ�

由x等于二分之一,x等于2,y=1/x及x轴围成图形的面积是多少?

用微积分做吧.面积=∫(1/2,2)1/xdx=(lnx)|(1/2,2)=ln2-ln1/2=ln2+ln2=2ln2.多少年不做了,不知做得对不对?

设(X,Y)服从在D上的均匀分布,其中D由X轴、Y轴及X+Y=1所围成,求D(X)?

因为服从均匀分布有f(x,y)=1/S=2(S是D的面积)有:D(x)=∫dx∫f(x,y)dy第一个积分是0到1第二个积分是0到1-x(应该是0到y,y=1-x,所以是0到1-x)积分结果是F(x)

求由直线x=0,x=1,y=0及曲线f(x)=1/2x²所围成的图形的面积

曲线是f(x)=(1/2)x^2还是1/(2x^2)啊?再问:前者再答:那么就在0-1积分∫f(x)dx=(1/6)x^3+b=1/6

由y=1/x,y=x,x=2及x轴围成的图形绕x轴旋转一周所得旋转体的体积

所求的旋转体体积V=∫(0,1)πx^2dx+∫(1,2)π(1/x)^2dx=π(x^3/3)|(0,1)-π(1/x)|(1,2)=π/3-π/2+π=5π/6

设D是由y=x,x+y=1及x=0所围成的区域,求二重积分 ∫∫dxdy

y=x,x+y=1,x=0所形成的交点为((1/2,1/2),(1,0)∫∫dxdy=∫[0,1/2]dy∫[y,1-y]dx=∫[0,1/2](1-2y)dy=(y-y^2)[0,1/2]=1/4

由直线x=12,x=2,曲线y=1x及x轴所围图形的面积为(  )

如图,由直线x=12,x=2,曲线y=1x及x轴所围图形的面积:S=∫ 2121xdx=lnx|212=ln2-ln12=2ln2.故选A.

用定积分计算由抛物线y=x^2,直线x=1,x=3,及x轴所围成的图形面积

抛物线y=x^2,直线x=1,x=3及x轴所围成的图形面积=∫(上限为3、下限为1)x^2dx=(1/3)x^3|(上限为3、下限为1)=(1/3)×3^3-1/3=9-1/3=26/3.

求由y=1/x,x=1,x=2及x轴围成平面图形的面积.

定积分就可以了 面积=ln2 过程如下图: 

由直线X=3,X=1/3,曲线Y=1/X及X轴所围成图形的面积

所求图形的面积=∫dx∫dy=∫(1/x-0)dx=∫d(lnx)=ln3-ln(1/3)=2ln3.

设D是由抛物线Y=1-x^2和X轴,y轴及直线X=2所围成的区域的面积及D绕X轴旋转所得旋转体的体积

约定一下:用S代替积分号,本题的积分下限为0,上限为2体积=Sπ(1-x^2)^2dx=πS(1-2x^2+x^4)dx=π(x-2x^2/3+x^5/5)|(下:0,上:2)=π(2-8/3+32/

设二元随机变量(X,Y)在由x,y轴及直线x+y+1=0所围成的区域上服从均匀分布,求E(X),E(2X-3Y),E(X

y=-(x+1),所围区域x(-(-1,0)E(x)=(a+b)/2=(-1+0)/2=-0.5E(2x-3y)=E(2x-3*(-x-1))=E(5x+3)=5E(x)+3=0.5E(xy)=-E(

求面积和旋转体体积求由曲线 y=e^x 和 y=e^(-x) 及 x=1所围成的平面图形的面积及此图形绕x轴旋转一周所形

y=e^x和y=e^(-x)的交点为(x,y)=(0,1)平面图形的面积S=∫{x=0→1}[e^x-e^(-x)]dx=∫{x=0→1}de^x+∫{x=0→1}de^(-x)=e^x|{x=0→1